「樹状突起スパイン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:


== 樹状突起スパインとは ==
== 樹状突起スパインとは ==
[[ファイル:Noguchi spine Fig1.png|サムネイル|'''図1. 生体マーモセット前頭葉大脳皮質2/3層錐体細胞樹状突起スパイン''']]
[[ファイル:Noguchi spine Fig1.png|サムネイル|'''図1. 樹状突起の蛍光画像<br>A.''' 生体マーモセット前頭前皮質2/3層錐体細胞樹状突起の2光子顕微鏡画像。*印は他の樹状突起。'''B.''' シナプス各部の名称。'''C.''' 樹状突起(赤)と軸索(緑)が重なった箇所でシナプスを形成している可能性がある。]]
 大脳皮質や海馬など脳に存在する神経細胞は、樹状突起や細胞体に形成されるシナプスで他の神経細胞からの入力を受け取り、計算結果を軸索に発生する活動電位として出力する。大脳皮質や海馬などの興奮性神経細胞や小脳のプルキンエ細胞などの樹状突起に形成される興奮性シナプスのほとんどは、樹状突起スパイン(以下スパインと記載)と呼ばれるトゲ状の構造に接続する('''図1''')。スパインは、神経細胞の形態がゴルジ染色法を用いて詳細に検討され始めた神経科学の黎明期(1880年~)にスペインの神経科学者Ramon y Cajalによって既に認識され、神経細胞同士のつなぎ目と推測されていた<ref name=DeFelipe2015><pubmed>25798090</pubmed></ref> 。スパインに形態が似たシナプス構造は線虫''C. elegans''でも報告されており<ref name=Cuentas-Condori2019><pubmed>31584430</pubmed></ref> 、比較的下等な動物から哺乳類にいたるまで保存された機能構造と考えられる。
 大脳皮質や海馬など脳に存在する神経細胞は、樹状突起や細胞体に形成されるシナプスで他の神経細胞からの入力を受け取り、計算結果を軸索に発生する活動電位として出力する。大脳皮質や海馬などの興奮性神経細胞や小脳のプルキンエ細胞などの樹状突起に形成される興奮性シナプスのほとんどは、樹状突起スパイン(以下スパインと記載)と呼ばれるトゲ状の構造に接続する('''図1''')。スパインは、神経細胞の形態がゴルジ染色法を用いて詳細に検討され始めた神経科学の黎明期(1880年~)にスペインの神経科学者Ramon y Cajalによって既に認識され、神経細胞同士のつなぎ目と推測されていた<ref name=DeFelipe2015><pubmed>25798090</pubmed></ref> 。スパインに形態が似たシナプス構造は線虫''C. elegans''でも報告されており<ref name=Cuentas-Condori2019><pubmed>31584430</pubmed></ref> 、比較的下等な動物から哺乳類にいたるまで保存された機能構造と考えられる。


22行目: 22行目:
== 構造と機能 ==
== 構造と機能 ==
=== シナプス接続の潜在的選択肢の拡大 ===
=== シナプス接続の潜在的選択肢の拡大 ===
 シナプスが新たに作られるとき、スパインによらずに樹状突起の本幹にシナプスが直接形成されるとすると、シナプス後部は樹状突起のごく近傍を通過する軸索とシナプスを形成することになる。これに対して、樹状突起本幹と直交する様に突き出たスパインの先端でシナプス結合する場合には、本幹から離れた位置を通過する軸索ともシナプス結合できる。つまり、本幹から3 &micro;m程度の距離までを通過する、より多くの軸索の候補から実際に接続する軸索を選択できることになる。これは、経験依存的なシナプス形成による神経回路構築の選択肢を大幅に広げると考えられる<ref name=Stepanyants2005><pubmed>15935485</pubmed></ref> 。
 シナプスが新たに作られるとき、スパインによらずに樹状突起の本幹にシナプスが直接形成されるとすると、シナプス後部は樹状突起のごく近傍を通過する軸索とシナプスを形成することになる。これに対して、樹状突起本幹と直交する様に突き出たスパインの先端でシナプス結合する場合には、本幹から離れた位置を通過する軸索ともシナプス結合できる(図'''2''')。つまり、本幹から3 &micro;m程度の距離までを通過する、より多くの軸索の候補から実際に接続する軸索を選択できることになる。これは、経験依存的なシナプス形成による神経回路構築の選択肢を大幅に広げると考えられる<ref name=Stepanyants2005><pubmed>15935485</pubmed></ref> 。


=== スパイン頭部、スパインネックと機能 ===
=== スパイン頭部、スパインネックと機能 ===
[[ファイル:Noguchi spine Fig2.png|サムネイル|'''図2. 生体マウス大脳皮質(1次視覚野)2/3層錐体細胞樹状突起における、グルタミン酸アンケイジングによる機能的なグルタミン酸受容体の分布'''<br>上段、樹状突起の2光子顕微鏡画像。中段、上段で赤丸で示した位置にそれぞれグルタミン酸を局所投与したときに流れたシナプス電流。下段、シナプス電流をもとに機能的グルタミン酸受容体の分布を図示した。大きいスパインほど、より多くのグルタミン酸受容体を有していることがわかる。<ref name=Noguchi2011 />から引用。]]
[[ファイル:Noguchi spine Fig2.png|サムネイル|'''図2. シナプス形成とスパインの有無の関係のモデル<br>樹状突起本幹において直接シナプスが形成される場合('''A''')とスパインを介してシナプス形成する場合('''B''')。単純なモデルでは、スパインを介することにより、近傍を通過する軸索(図の軸索3, 4)に加え、スパインの長さの分より遠くの軸索にも接続可能となる(軸索1, 2)(文献4参照)。<ref name=Noguchi2011 />参照]]
 スパインは、ふくらんだスパイン頭部(spine head)と、樹状突起本幹と頭部とを結ぶ細いスパインネック(頚部)(spine neck)から成る('''図1''')。形態的特徴から、頭部が大きい「mushroom spine」、頭部が比較的小さく細長い「thin spine」、ネックがほとんど無い「stubby spine」に分類されることもある。スパイン頭部が不明瞭で細長い「フィロポディア」も存在するが厳密にはスパインに分類されない。実際の樹状突起の電子顕微鏡画像や蛍光顕微鏡画像を詳細にみると、頭部あるいはネックの形態はそれぞれのスパインごとに異なっており、それぞれのスパインで独立した制御が可能であることを示している。
 スパインは、ふくらんだスパイン頭部(spine head)と、樹状突起本幹と頭部とを結ぶ細いスパインネック(頚部)(spine neck)から成る('''図1''')。形態的特徴から、頭部が大きい「mushroom spine」、頭部が比較的小さく細長い「thin spine」、ネックがほとんど無い「stubby spine」に分類されることもある。スパイン頭部が不明瞭で細長い「フィロポディア」も存在するが厳密にはスパインに分類されない。実際の樹状突起の電子顕微鏡画像や蛍光顕微鏡画像を詳細にみると、頭部あるいはネックの形態はそれぞれのスパインごとに異なっており、それぞれのスパインで独立した制御が可能であることを示している。


 シナプス機能と形態との関連として、スパイン頭部体積が大きいほど、機能的なAMPA型グルタミン酸受容体がより多く存在し、スパイン体積に比例的であることがラット海馬脳スライスや生体マウス大脳皮質錐体細胞スパインにおいて示されている('''図2''')<ref name=Matsuzaki2001><pubmed>11687814</pubmed></ref><ref name=Noguchi2011><pubmed>21486811</pubmed></ref> 。
 シナプス機能と形態との関連として、スパイン頭部体積が大きいほど、機能的なAMPA型グルタミン酸受容体がより多く存在し、スパイン体積に比例的であることがラット海馬脳スライスや生体マウス大脳皮質錐体細胞スパインにおいて示されている('''図3''')<ref name=Matsuzaki2001><pubmed>11687814</pubmed></ref><ref name=Noguchi2011><pubmed>21486811</pubmed></ref> 。


 一方、細いスパインネックを持つことにより、離れた軸索とシナプスを作る場合でも脳のスペースを節約できる。それと同時に、細いネックは物質が細胞質中あるいは細胞膜に沿って樹状突起本幹からスパイン内へ、あるいはその逆方向に、自由拡散することに一定の制限を与える。つまり細いネックはスパイン内をある程度、樹状突起本幹から独立したコンパートメントにする<ref name=Adrian2014><pubmed>25538570</pubmed></ref><ref name=Ewers2014><pubmed>25494357</pubmed></ref><ref name=Holcman2011><pubmed>22655862</pubmed></ref> 。
 一方、細いスパインネックを持つことにより、離れた軸索とシナプスを作る場合でも脳のスペースを節約できる。それと同時に、細いネックは物質が細胞質中あるいは細胞膜に沿って樹状突起本幹からスパイン内へ、あるいはその逆方向に、自由拡散することに一定の制限を与える。つまり細いネックはスパイン内をある程度、樹状突起本幹から独立したコンパートメントにする<ref name=Adrian2014><pubmed>25538570</pubmed></ref><ref name=Ewers2014><pubmed>25494357</pubmed></ref><ref name=Holcman2011><pubmed>22655862</pubmed></ref> 。


 また、一定時間ごとに一部のスパインが取り除かれていくが、数日以上の時間スケールでは、体積の大きいスパインの方が小さいスパインより長寿命である傾向が報告されている<ref name=Holtmaat2005><pubmed>15664179</pubmed></ref><ref name=Yasumatsu2008><pubmed>19074033</pubmed></ref> 。体積の大きいスパインは前述のようにグルタミン酸受容体が多く存在して情報伝達効率も大きいことから、記憶・学習に伴って変更された神経回路が体積の大きいスパインによって長期間維持されると考えられる。
 また、一定時間ごとに一部のスパインが取り除かれていくが、数日以上の時間スケールでは、体積の大きいスパインの方が小さいスパインより長寿命である傾向が報告されている<ref name=Holtmaat2005><pubmed>15664179</pubmed></ref><ref name=Yasumatsu2008><pubmed>19074033</pubmed></ref> 。体積の大きいスパインは前述のようにグルタミン酸受容体が多く存在して情報伝達効率も大きいことから、記憶・学習に伴って変更された神経回路が体積の大きいスパインによって長期間維持されると考えられる。
 抑制性シナプスを有する樹状突起スパインが大脳皮質や線条体などでみられる (図4、文献54)。抑制性入力はこれらの領域において、同時に入力する興奮性入力を制御(gating, ゲーティング)することによって、必要なタイミングで特定の神経回路を働かせたり、複数の神経回路の相互に排他的な活動を実現している可能性がある(文献55)。


=== 内部構造 ===
=== 内部構造 ===
52行目: 54行目:


 培養神経細胞や脳スライス標本、あるいは生体を用いた実験でシナプス可塑性が確認されている刺激条件として、長期増強(long-term potentiation; LTP)刺激、あるいは[[長期抑制]](long-term depression; [[LTD]])刺激などがある。実際に、生体の記憶・学習の結果、長期増強などの実験的なシナプス可塑性の生じやすさも影響を受けることから、実験的なシナプス可塑性と実際の記憶・学習におけるシナプス可塑性のシグナルの伝達経路は(少なくとも部分的に)共通であると考えられる。
 培養神経細胞や脳スライス標本、あるいは生体を用いた実験でシナプス可塑性が確認されている刺激条件として、長期増強(long-term potentiation; LTP)刺激、あるいは[[長期抑制]](long-term depression; [[LTD]])刺激などがある。実際に、生体の記憶・学習の結果、長期増強などの実験的なシナプス可塑性の生じやすさも影響を受けることから、実験的なシナプス可塑性と実際の記憶・学習におけるシナプス可塑性のシグナルの伝達経路は(少なくとも部分的に)共通であると考えられる。
[[ファイル:Noguchi spine Fig3.png|サムネイル|'''図3. ラット海馬培養スライス標本、錐体細胞樹状突起スパインにおけるスパイン体積増大の誘導'''<br>樹状突起スパインの黄色の矢頭の位置で、ケイジドグルタミン酸の2光子アンケイジングによってグルタミン酸を長期増強条件(1Hz, 60回)で投与した。その結果、投与されたスパインの頭部体積が増大し、このときスパイン表面の機能的なグルタミン酸受容体も増加していた。溶液中のマグネシウムイオンを除くことによってNMDA型グルタミン酸受容体を流れるシナプス電流を増加させている。<ref name=Matsuzaki2004 />から引用。]]
[[ファイル:Noguchi spine Fig3.png|サムネイル|'''図3. 樹状突起スパインの体積とスパイン表面の機能的なグルタミン酸受容体数の関係のモデル
 ケイジドグルタミン酸の2光子光分解法(アンケイジング)を用いて、グルタミン酸を目的スパインに頻回投与することによって、実験的なシナプス可塑性刺激を単一のスパインに与えることが実施されている<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Harvey2007><pubmed>18097401</pubmed></ref><ref name=Hayama2013><pubmed>23974706</pubmed></ref><ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref><ref name=Murakoshi2011><pubmed>21423166</pubmed></ref><ref name=Noguchi2019><pubmed>31558759</pubmed></ref><ref name=Oh2013><pubmed>23269840</pubmed></ref> 。この方法やその他の実験方法を用いた報告から、シナプス長期増強刺激に応じて、樹状突起スパイン表面の機能的なグルタミン酸受容体が増加し、これと同時にスパイン体積の増大が生じることが、げっ歯類海馬脳スライス標本において示された('''図3''')<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref> 。同様にシナプス長期抑制刺激では、表面のグルタミン酸受容体数が減少し、これと同時にスパイン体積減少が生じた<ref name=Oh2013><pubmed>23269840</pubmed></ref><ref name=Zhou2004><pubmed>15572107</pubmed></ref> 。長期増強の際、グルタミン酸受容体は、エキソサイトーシスによって細胞内から細胞膜へ移行し、側方拡散によってシナプス部位へ移動するとされる。一方、長期抑制の際は、受容体のエンドサイトーシスによるスパイン表面からの除去が増加すると考えらえる<ref name=Choquet2018><pubmed>30381423</pubmed></ref> 。スパイン体積変化に伴ってアクチン線維のリモデリング(再構成)が生じるが、リモデリング中やリモデリング後もしばらく以前の状態を何らかの形で保持しているのか否かといった問題など、記憶・学習などの基盤となる興味深い課題と思われる<ref name=Borovac2018><pubmed>30004015</pubmed></ref><ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Honkura2008><pubmed>18341992</pubmed></ref><ref name=Nakahata2018><pubmed>30210329</pubmed></ref> 。
(文献5, 6参照)。<br>A, B.''' ラット海馬培養スライスや生体マウス大脳皮質の神経細胞の樹状突起において、機能的なAMPA型グルタミン酸受容体数はスパイン頭部体積に比例的であることが示された。また、単一スパイン(図の3番のスパイン)にシナプス可塑性刺激(長期増強; Long-term potentiation (LTP) 刺激) を加えたとき、刺激スパインのグルタミン酸受容体数が増加し、スパイン頭部体積も増加した(文献24参照)。]]
 ケイジドグルタミン酸の2光子光分解法(アンケイジング)を用いて、グルタミン酸を目的スパインに頻回投与することによって、実験的なシナプス可塑性刺激を単一のスパインに与えることが実施されている<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Harvey2007><pubmed>18097401</pubmed></ref><ref name=Hayama2013><pubmed>23974706</pubmed></ref><ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref><ref name=Murakoshi2011><pubmed>21423166</pubmed></ref><ref name=Noguchi2019><pubmed>31558759</pubmed></ref><ref name=Oh2013><pubmed>23269840</pubmed></ref> 。この方法やその他の実験方法を用いた報告から、シナプス長期増強刺激に応じて、樹状突起スパイン表面の機能的なグルタミン酸受容体が増加し、これと同時にスパイン体積の増大が生じることが、げっ歯類海馬脳スライス標本において示された('''図3''')<ref name=Matsuzaki2004><pubmed>15190253</pubmed></ref> 。同様にシナプス長期抑制刺激では、表面のグルタミン酸受容体数が減少し、これと同時にスパイン体積減少が生じた<ref name=Oh2013><pubmed>23269840</pubmed></ref><ref name=Zhou2004><pubmed>15572107</pubmed></ref> 。長期増強の際、グルタミン酸受容体は、エキソサイトーシスによって細胞内から細胞膜へ移行し、側方拡散によってシナプス部位へ移動するとされる。一方、長期抑制の際は、受容体のエンドサイトーシスによるスパイン表面からの除去が増加すると考えらえる<ref name=Choquet2018><pubmed>30381423</pubmed></ref> 。エンドサイトーシスはPSD近傍のエンドサイトーシスゾーン(endocytic zones)において主に生じるとされる(文献56)。スパイン体積変化に伴ってアクチン線維のリモデリング(再構成)が生じるが、リモデリング中やリモデリング後もしばらく以前の状態を何らかの形で保持しているのか否かといった問題など、記憶・学習などの基盤となる興味深い課題と思われる<ref name=Borovac2018><pubmed>30004015</pubmed></ref><ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Honkura2008><pubmed>18341992</pubmed></ref><ref name=Nakahata2018><pubmed>30210329</pubmed></ref> 。


== スパインが伝える情報と学習 ==
== スパインが伝える情報と学習 ==
63行目: 66行目:


== 樹状突起スパインと精神・神経疾患、発達障害 ==
== 樹状突起スパインと精神・神経疾患、発達障害 ==
[[File:Noguchi_spine_Fig4.png|サムネイル|'''図4. 疾患における樹状突起スパイン密度の変異のモデル図'''<br>健常人(Normal; 黒線)、自閉スペクトラム症(ASD; 紫)、統合失調症(SZ; 緑)、アルツハイマー型認知症(AD; 青線)、それぞれにおける生涯のスパイン数の変動の概念図を示す。図の上の横棒は発症時期を示す。健常人では、出生前後で継続して増加し、幼児-児童期から思春期にかけて消去されて成人のスパイン密度に達する。ASDでは過剰なスパイン形成もしくは不十分なスパイン消去が幼児・児童期から生じてスパイン増加状態につながる。統合失調症では、思春期前後の過剰なスパインの消去がその時期の症候の出現につながる。アルツハイマー型認知症では、成人期の後期にスパインが急速に失われ、認知能力の低下に関連する。<ref name=Penzes2011 />より改変。]]
[[File:Noguchi_spine_Fig4.png|サムネイル|'''図4. 抑制性シナプスも有する樹状突起スパインのモデル<br>A.''' 大脳皮質や線条体などのスパインには、興奮性のグルタミン酸シナプスに加えて、抑制性のGABAシナプスも持つものが存在する。'''B.''' 抑制性シナプス入力は、静止膜電位付近においては、シャンティング(shunting; 短絡)によって興奮性入力によるシナプス後電位の上昇を抑制する。すなわち、抑制性シナプスが興奮性シナプスの機能を制御(ゲーティング)することが考えられる。]]
 ヒト由来の標本の場合、疾患によっては標本の入手の困難さがあり、また死後から標本作製までの時間や標本作製の手順も一様にそろえることが難しい。しかしながら、現在までに神経疾患や精神疾患あるいは発達障害において、スパイン形態やスパイン密度の変異が報告されてきている('''図4''')<ref name=Penzes2011><pubmed>21346746</pubmed></ref> 。脳バンクの整備と疾患モデル動物を用いた解析などによって、今後さらに病態とシナプス形態との関係の理解が深められると期待される。
 ヒト由来の標本の場合、疾患によっては標本の入手の困難さがあり、また死後から標本作製までの時間や標本作製の手順も一様にそろえることが難しい。しかしながら、現在までに神経疾患や精神疾患あるいは発達障害において、スパイン形態やスパイン密度の変異が報告されてきている<ref name=Penzes2011><pubmed>21346746</pubmed></ref> 。脳バンクの整備と疾患モデル動物を用いた解析などによって、今後さらに病態とシナプス形態との関係の理解が深められると期待される。


 [[自閉スペクトラム症]](autism spectrum disorder; ASD) やASDの類縁疾患である脆弱X症候群患者の死後脳から得られた大脳皮質の錐体細胞ではスパイン密度が増加することが報告されている<ref name=Hutsler2010><pubmed>19896929</pubmed></ref><ref name=Purpura1974><pubmed>4469701</pubmed></ref> 。ASDモデル動物ではシナプスの安定性が低下して、スパインの消去と新規生成が亢進しているという報告もある<ref name=Isshiki2014><pubmed>25144834</pubmed></ref> 。局所神経結合の増加と長距離神経結合の低下がASDで見られるとされていることと、スパイン密度の増加・スパインの安定性の低下は、相互に関連している可能性がある。
 [[自閉スペクトラム症]](autism spectrum disorder; ASD) やASDの類縁疾患である脆弱X症候群患者の死後脳から得られた大脳皮質の錐体細胞ではスパイン密度が増加することが報告されている<ref name=Hutsler2010><pubmed>19896929</pubmed></ref><ref name=Purpura1974><pubmed>4469701</pubmed></ref> 。ASDモデル動物ではシナプスの安定性が低下して、スパインの消去と新規生成が亢進しているという報告もある<ref name=Isshiki2014><pubmed>25144834</pubmed></ref> 。局所神経結合の増加と長距離神経結合の低下がASDで見られるとされていることと、スパイン密度の増加・スパインの安定性の低下は、相互に関連している可能性がある。

案内メニュー