「シナプス形成」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
8行目: 8行目:
英:synapse formation, synaptogenesis
英:synapse formation, synaptogenesis
{{box|text=
{{box|text=
神経細胞とその相手の細胞(神経細胞、筋肉など)は、シナプスという特殊化した細胞接着構造で結合している。シナプス形成とは、神経回路形成において、機能するシナプスができあがるまでの過程である。化学シナプスの形成には、シナプス前部(通常は軸索)が、シナプス後部(神経細胞の樹状突起、筋肉など)となる標的細胞の適切な細胞上の適切な位置に結合すること(シナプス特異性)と、シナプス前部と後部がシナプス間隙を介して同じ場所に配向して、シナプス前部にシナプス小胞や分泌装置の蓄積、シナプス後部に神経伝達物質受容体の集合やシナプス重厚部が生じるということ(シナプス分化)がある。シナプス形成は、シナプス前部とシナプス後部の間の相互作用によって制御されており、このような細胞間相互作用を担うシナプス接着分子、細胞外マトリックス分子、更に分泌性因子が同定されている。また、グリア細胞など神経細胞以外のプレーヤーの関与も重要である。神経系の発達期や臨界期においては、化学シナプス形成は過剰に行われ、神経活動などの影響により、シナプス刈り込みにより再編成される。また、発達中のシナプス形成とも共通する成熟した神経系でのシナプス新生は、学習と記憶にも重要な役割をし、シナプス形成の異常は、自閉症、精神疾患、認知症などの原因になると考えられている。}}
神経細胞とその相手の細胞(神経細胞、筋肉など)は、シナプスという特殊化した細胞接着構造で結合している。シナプス形成とは、神経回路形成において、機能するシナプスができあがるまでの過程である。化学シナプスの形成には、シナプス前部(通常は軸索)が、シナプス後部(神経細胞の樹状突起、筋肉など)となる標的細胞の適切な細胞上の適切な位置に結合すること(シナプス特異性)と、シナプス前部と後部がシナプス間隙を介して同じ場所に配向して、シナプス前部にシナプス小胞や分泌装置の蓄積、シナプス後部に神経伝達物質受容体の集合やシナプス重厚部が生じるということ(シナプス分化)がある。シナプス形成は、シナプス前部とシナプス後部の間の相互作用によって制御されており、このような細胞間相互作用を担うシナプス接着分子、細胞外マトリックス分子、更に分泌性因子が同定されている。また、グリア細胞など神経細胞以外のプレーヤーの関与も重要である。神経系の発達期や臨界期においては、化学シナプス形成は過剰に行われ、神経活動などの影響により、シナプス刈り込みにより再編成される。また、発達中のシナプス形成とも共通する成熟した神経系でのシナプス新生や構造変化は、学習と記憶にも重要な役割をし、シナプス形成の異常は、自閉症、精神疾患、認知症などの原因になると考えられている。}}


==はじめに==
==はじめに==
神経細胞は、[[シナプス]]で適切に結合、情報伝達し、情報処理ユニットとして機能している。シナプス形成は、神経細胞の間で適切な場所で生じるシナプスの構造構築から機能発現までの過程であるが、正常の発生だけでなく、可塑性や再生でも見られ、正常発生でのシナプス形成と基本的には共通するものであると考えられる。しかし、シナプス形成といった場合、発生における化学シナプスの構造構築に限定して議論されることが多いので、本項目もそれを中心に扱う。また、化学シナプスの形成とは本質的に構造の異なる[[電気シナプス]](ギャップジャンクション)の形成については、化学シナプス形成との関係性もあると考えられるが、本項目では扱わない<ref><pubmed>23237660</pubmed></ref><ref><pubmed>28170151 </pubmed></ref><ref><pubmed>32883654</pubmed></ref>。
神経細胞は、[[シナプス]]で適切に結合、情報伝達し、情報処理ユニットとして機能している。シナプス形成は、神経細胞の間で適切な場所で生じるシナプスの構造構築から機能発現までの過程であるが、正常の発生だけでなく、再生や可塑性でも見られ、正常発生でのシナプス形成と基本的には共通するものであると考えられる。しかし、シナプス形成といった場合、発生における化学シナプスの構造構築について議論されることが多いので、本項目もそれを中心に扱う。また、化学シナプスの形成とは本質的に構造の異なる[[電気シナプス]](ギャップジャンクション)の形成については、化学シナプス形成との関係性もあると考えられるが、本項目では扱わない<ref><pubmed>23237660</pubmed></ref><ref><pubmed>28170151 </pubmed></ref><ref><pubmed>32883654</pubmed></ref>。


==シナプス形成の3ステップについての概観==
==シナプス形成の3ステップについての概観==
===(ステップ1)シナプス特異性===
===ステップ1:シナプス特異性===
軸索は[[軸索ガイダンス]]により、標的細胞近辺に到達する。軸索は特定の標的細胞と特異的にシナプス結合することで、情報を処理できる機能的回路を作る(celluar specificity)。また、シナプスはシナプス後細胞上の特定の部位に形成される(subcellular specificity)<ref><pubmed>19575668</pubmed></ref><ref><pubmed>26656254</pubmed></ref>。この初期のステップについては、「[[標的認識]]」の項を参考にされたい。神経伝達物質や標的細胞が持つ受容体などのシナプスの神経化学的形質は、遺伝子にプログラムされて発生していく神経系の細胞に内在的なものと大方考えられているが、シナプス形成後の誘導により変換するケースもあるかもしれない<ref><pubmed>10202548</pubmed></ref>。
軸索は[[軸索ガイダンス]]により、標的細胞近辺に到達する。軸索は特定の標的細胞と特異的にシナプス結合することで、情報を処理できる機能的回路を作る(celluar specificity)。また、シナプスはシナプス後細胞上の特定の部位に形成される(subcellular specificity)<ref><pubmed>19575668</pubmed></ref><ref><pubmed>26656254</pubmed></ref>。この初期のステップについては、「[[標的認識]]」の項を参考にされたい。神経伝達物質や標的細胞が持つ受容体などのシナプスの神経化学的形質は、遺伝子にプログラムされて発生していく神経系の細胞に内在的なものと大方考えられているが、シナプス形成後の誘導により変換するケースもあるかもしれない<ref><pubmed>10202548</pubmed></ref>。


===(ステップ2)シナプス分化===
===ステップ2:シナプス分化===
次に、標的細胞と接触する軸索の一部分はシナプス小胞やアクティブゾーンを伴う[[シナプス前終末]]へと分化し(presynaptic differentiation)、軸索と接触した標的細胞では局所的に[[神経伝達物質受容体]]や細胞内足場が集積しシナプス後部へと分化する(postsynaptic differentiation)。シナプス前部とシナプス後部の特殊化は、軸索と標的細胞の間の相互作用で制御される。この細胞間相互作用についての多くの原理的知見は、運動神経細胞からの軸索が骨格筋線維上で作る巨大で単純なシナプスである[[神経筋接合部]](neuromuscular junction, NMJ)についての20世紀に行われた研究から得られてきた<ref><pubmed>10202544</pubmed></ref>。21世紀になって、小さく多様な中枢神経系でのシナプス形成や無脊椎動物モデル動物のシナプス形成についての分子的な理解が進んでいる<ref><pubmed>30359597</pubmed></ref>。本項目では、特にこのステップについて、原理的な観点から概観する。
次に、標的細胞と接触する軸索の一部分はシナプス小胞やアクティブゾーンを伴う[[シナプス前終末]]へと分化し(presynaptic differentiation)、軸索と接触した標的細胞では局所的に[[神経伝達物質受容体]]や細胞内足場が集積しシナプス後部へと分化する(postsynaptic differentiation)。シナプス前部とシナプス後部の特殊化は、軸索と標的細胞の間の相互作用で制御される。この細胞間相互作用についての多くの原理的知見は、運動神経細胞からの軸索が骨格筋線維上で作る巨大で単純なシナプスである[[神経筋接合部]](neuromuscular junction, NMJ)についての20世紀に行われた研究から得られてきた<ref><pubmed>10202544</pubmed></ref>。21世紀になって、小さく多様な中枢神経系でのシナプス形成や無脊椎動物モデル動物のシナプス形成についての分子的な理解が進んでいる<ref><pubmed>30359597</pubmed></ref>。本項目では、特にこのステップについて、原理的な観点から概観する。


===(ステップ3)シナプス再編成===
===ステップ3:シナプス再編成===
シナプス形成後は、シナプスの成熟や神経回路の再編成が観察される。発達期においては、シナプス形成は過剰に行われ、神経活動などの影響により過剰なシナプスは除去さ<ref><pubmed>10719884</pubmed></ref><ref><pubmed>26436703</pubmed></ref><ref><pubmed>29716431</pubmed></ref><ref><pubmed>31372212</pubmed></ref>。シナプスの除去(synapse elimination)は、[[神経細胞死]]と同様に、神経回路を再編する重要な過程であるが、これについては「[[シナプス刈り込み]]」の項を参考されたい。シナプス形成は、個体発生の過程だけでなく、成体におけるシナプスの新生や構造変化は、記憶と学習にも重要な役割をしているし、シナプス形成の異常は、[[自閉症]]、[[精神疾患]]、[[認知症]]などの原因になると考えられている<ref><pubmed>22258914</pubmed></ref><ref><pubmed>22540979</pubmed></ref>。。
シナプス形成後は、シナプスの成熟や神経回路の再編成が観察される。発達期においては、シナプス形成は過剰に行われ、神経活動などの影響により過剰なシナプスは除去さ<ref><pubmed>10719884</pubmed></ref><ref><pubmed>26436703</pubmed></ref><ref><pubmed>29716431</pubmed></ref><ref><pubmed>31372212</pubmed></ref>。シナプスの除去(synapse elimination)は、[[神経細胞死]]と同様に、神経回路を再編する重要な過程であるが、これについては「[[シナプス刈り込み]]」の項を参考されたい。シナプス形成は、個体発生の過程だけでなく、成体におけるシナプスの新生や構造変化は、学習と記憶にも重要な役割をし、シナプス形成の異常は、[[自閉症]]、[[精神疾患]]、[[認知症]]などの原因になると考えられている<ref><pubmed>22258914</pubmed></ref><ref><pubmed>22540979</pubmed></ref>。。


==神経筋接合部におけるシナプス形成==
==神経筋接合部におけるシナプス形成==
32行目: 32行目:


===シナプスオーガナイザー===
===シナプスオーガナイザー===
運動神経細胞と筋線維は、それぞれ独立してシナプス前部とシナプス後部に対応するシナプス構成要素を合成し、自立的に集合させることが可能である。つまり、運動軸索では、筋線維がない状態でもシナプス小胞が見られ、軸索中に保持することができる。一方、筋線維は神経伝達物質受容体であるアセチルコリンレセプターを合成し、神経がない状態でも、細胞表面上に多数のアセチルコリンレセプターからなる巨大集合構造を作ることができる(クラスタリング, clustering)。したがって、シナプス形成を制御する細胞間相互作用は、シナプス小胞の形成や受容体クラスタリングそのものの誘発因子というより、むしろそれらの位置を決め配向させる指令因子(オーガナイザー, organizer)としての役割が大きい。また、軸索中のシナプス小胞の集積は、ポリリジン被覆ビーズなどとの接触でも容易に引き起こされることから、オーガナイザーとしての役割もAll or nothingといった絶対的なものではなく促進的なものである<ref><pubmed>7127105</pubmed></ref>。しかし、以下に記述するように、シナプス後部やシナプス前部の分化が、それぞれの接触によって誘発、促進される可能性があることを示す証拠もある。
運動神経細胞と筋線維は、それぞれ独立してシナプス前部とシナプス後部に対応するシナプス構成要素を合成し、自立的に集合させることが可能である。つまり、運動軸索では、筋線維がない状態でもシナプス小胞が見られ、軸索中に保持することができる。一方、筋線維は神経伝達物質受容体であるアセチルコリンレセプターを合成し、神経がない状態でも、細胞表面上に多数のアセチルコリンレセプターからなる巨大集合構造を作ることができる(クラスタリング, clustering)。したがって、シナプス形成を制御する細胞間相互作用は、シナプス小胞の形成や受容体クラスタリングそのものの誘発因子というより、むしろそれらの位置を決め配向させる指令因子(オーガナイザー, organizer)としての役割が大きい。また、軸索中のシナプス小胞の集積は、ポリリジン被覆ビーズなどとの接触でも容易に引き起こされることから、オーガナイザーとしての役割もAll or nothingといった絶対的なものではなく促進的なものである<ref><pubmed>7127105</pubmed></ref>。しかし、以下に記述するように、シナプス後部やシナプス前部の分化が、それぞれの接触によって誘発、促進される可能性があることを示す証拠もある。これらの証拠のいくつかは、神経筋接合部の再生を利用することで得られた。


===シナプス後部の分化===
===シナプス後部の分化===

案内メニュー