246
回編集
Masahitoyamagata (トーク | 投稿記録) 細編集の要約なし |
Masahitoyamagata (トーク | 投稿記録) 細編集の要約なし |
||
7行目: | 7行目: | ||
英:single-cell RNA sequencing, scRNAseq | 英:single-cell RNA sequencing, scRNAseq | ||
{{box|text= | {{box|text= | ||
シングルセルRNAシーケンシング(single-cell RNA sequencing, 以下scRNAseq)は、[[次世代シーケンサー]] (next generation | シングルセルRNAシーケンシング(single-cell RNA sequencing, 以下scRNAseq)は、[[次世代シーケンサー]] (next generation sequencer、以下NGS)を用いることで、個々の細胞が保持しているmRNA全体を質的、量的に網羅的に調べる方法である。次元圧縮などの数理的な解析と組み合わせることで、遺伝子発現の状態に基づいた細胞の分類を行うことが可能であり、従来の組織学的、あるいは細胞生物学的手法では知られなかった新規の細胞種の同定や細胞状態の推定を行うことが可能になった。また、遺伝子発現プロファイルの変化に基づく擬時系列解析によって、刺激や発生に伴う細胞状態の遷移の描写ができる。神経系では、この方法により、神経細胞や非神経細胞の分類や状態についての知見が深まり、新しい神経細胞タイプ、細胞マーカー、病態の理解、更に機能的な遺伝子の同定などが系統的かつ網羅的に行われるようになった。scRNAseqに、空間的情報、エピゲノム情報、タンパク質情報などの複数モダリティを取り入れた統合解析(multimodal single-cell omics)も行われている。 | ||
}} | }} | ||
19行目: | 19行目: | ||
細胞種にもよるが、1つの細胞内にある全RNA(ribosomal RNAを含む)は細胞種にもよるが1-50pgである。そのうち、mRNAの占める割合は1-5%程度である<ref><pubmed>15239941</pubmed></ref>。この微量のmRNAをcDNAに変換してから大幅に増幅できる方法が発明されたことで、1つの細胞が発現するmRNAを高感度で検出できるようになった<ref><pubmed>1557406</pubmed></ref><ref><pubmed>7541630</pubmed></ref> 。例えば、1991年、Linda BuckとRichard Axelは、[[嗅覚受容体]]が[[Gタンパク質]]であると仮定し、個々の嗅覚細胞で特異的に観察されるGタンパク質mRNAを比較することで、嗅覚受容体の同定に成功した<ref><pubmed>1840504</pubmed></ref>。1995年になると、Catherine DulacとRichard Axelは、異なる[[鋤鼻神経細胞]]で特異的に発現する遺伝子を1つの細胞から作製したcDNAライブラリーを比較するディファレンシャル・スクリーニングを行うことで、[[フェロモン受容体]]を同定した<ref><pubmed>7585937</pubmed></ref>。同じ手法で異なる種類の神経細胞で発現している遺伝子も同定され<ref><pubmed>9778248</pubmed></ref><ref><pubmed>12230981</pubmed></ref>、1つの細胞の持つトランスクリプトームを比較するアプローチが神経細胞で特徴的に発現している遺伝子の同定に効果的なことが示された。 | 細胞種にもよるが、1つの細胞内にある全RNA(ribosomal RNAを含む)は細胞種にもよるが1-50pgである。そのうち、mRNAの占める割合は1-5%程度である<ref><pubmed>15239941</pubmed></ref>。この微量のmRNAをcDNAに変換してから大幅に増幅できる方法が発明されたことで、1つの細胞が発現するmRNAを高感度で検出できるようになった<ref><pubmed>1557406</pubmed></ref><ref><pubmed>7541630</pubmed></ref> 。例えば、1991年、Linda BuckとRichard Axelは、[[嗅覚受容体]]が[[Gタンパク質]]であると仮定し、個々の嗅覚細胞で特異的に観察されるGタンパク質mRNAを比較することで、嗅覚受容体の同定に成功した<ref><pubmed>1840504</pubmed></ref>。1995年になると、Catherine DulacとRichard Axelは、異なる[[鋤鼻神経細胞]]で特異的に発現する遺伝子を1つの細胞から作製したcDNAライブラリーを比較するディファレンシャル・スクリーニングを行うことで、[[フェロモン受容体]]を同定した<ref><pubmed>7585937</pubmed></ref>。同じ手法で異なる種類の神経細胞で発現している遺伝子も同定され<ref><pubmed>9778248</pubmed></ref><ref><pubmed>12230981</pubmed></ref>、1つの細胞の持つトランスクリプトームを比較するアプローチが神経細胞で特徴的に発現している遺伝子の同定に効果的なことが示された。 | ||
一方で多くの種類のmRNAを1細胞レベルで一挙に観察するための技術には感度やスループット、そしてコストの観点からブレークスルーが待たれた。1つの問題は多種類のcDNAを簡便に識別することを可能にする方法の開発であった。これを可能にしたのが、[[PCR]] | 一方で多くの種類のmRNAを1細胞レベルで一挙に観察するための技術には感度やスループット、そしてコストの観点からブレークスルーが待たれた。1つの問題は多種類のcDNAを簡便に識別することを可能にする方法の開発であった。これを可能にしたのが、[[PCR]]などのcDNA増幅法の改良と[[マイクロアレイ]]の利用であった<ref><pubmed>12736331</pubmed></ref><ref><pubmed>16547197</pubmed></ref>。しかしながら、細胞ごとに高価なマイクロアレイを使用することは、多数の細胞のトランスクリプトームの観察には限界があった。2009年になると、これらの問題を解決できる可能性として、NGSを利用するscRNAseqプロトコールがAzim Suraniのグループによって報告された<ref><pubmed>19349980</pubmed></ref>。しかしながら、多数のマイクロアレイでなく1回のNGS使用で済ませることができるものの、この報告でもわずか8個の細胞の解析に留まっており、1つの細胞ごとに処理を行うという操作が必要で、多数の細胞についてのトランスクリプームを一挙に理解することはできなかった。また、塩基配列の違うcDNAごとにPCR効率に差がある結果生じる増幅バイアス、また3’末端側が選択的に補足されることなどの課題があった。 | ||
==scRNAseqの現状== | ==scRNAseqの現状== | ||
===scRNAseqの分子生物学的反応=== | ===scRNAseqの分子生物学的反応=== | ||
その後、5’末端側の領域まで効率よく増幅するscRNAseqのプロトコールが考案された<ref><pubmed>32518403</pubmed></ref>。特に、SMART-seq(Switching mechanism at the 5' End of RNA Templates)<ref><pubmed>22820318</pubmed></ref>およびその改良されたプロトコールであるSMART-seq2<ref><pubmed>24056875</pubmed></ref> <ref><pubmed>24385147</pubmed></ref>の使用例が多い(既に、SMART-seq3という改良プロトコールもある<ref><pubmed>32518404</pubmed></ref>が、以下SMART-seqと呼ぶ)。また、類似法としてSTRT(single-cell tagged reverse transcription)<ref><pubmed>21543516</pubmed></ref>などがある。 | その後、5’末端側の領域まで効率よく増幅するscRNAseqのプロトコールが考案された<ref><pubmed>32518403</pubmed></ref>。特に、SMART-seq(Switching mechanism at the 5' End of RNA Templates)<ref><pubmed>22820318</pubmed></ref>およびその改良されたプロトコールであるSMART-seq2<ref><pubmed>24056875</pubmed></ref> <ref><pubmed>24385147</pubmed></ref>の使用例が多い(既に、SMART-seq3という改良プロトコールもある<ref><pubmed>32518404</pubmed></ref>が、以下SMART-seqと呼ぶ)。また、類似法としてSTRT(single-cell tagged reverse transcription)<ref><pubmed>21543516</pubmed></ref>などがある。 | ||
29行目: | 29行目: | ||
また、Quartz-SeqやQuartz-Seq2ではPCR用のアダプターを付加する反応にポリAテーリングを利用することで、他の手法と比較して1.5-5倍程度の遺伝子を検出できる<ref><pubmed> 32518403</ref></pubmed>。 | また、Quartz-SeqやQuartz-Seq2ではPCR用のアダプターを付加する反応にポリAテーリングを利用することで、他の手法と比較して1.5-5倍程度の遺伝子を検出できる<ref><pubmed> 32518403</ref></pubmed>。 | ||
===バーコード技術 === | ===バーコード技術 === | ||
増幅バイアス除去のアプローチとして特に重要なのは、2011年に発表された核酸配列バーコードを利用した方法で、分子識別子(unique molecular identifiers: UMI)を持つcDNAを増幅させ、NGS後の情報処理を用いるものであると考えられる<ref><pubmed>22101854</pubmed></ref>。この方法では逆転写反応の際、ランダム塩基配列から構成されるUMIをcDNA末端に付加した後、増幅反応、NGSを行い、cDNA配列とUMI配列の両方を読む。cDNAにはRNA1分子に1つのUMIが付加されるので、同一のUMIを持っていれば、逆転写時に同一のcDNA由来とカウントする。UMIをカウントすることで、増幅前のmRNAのコピー数を知ることができる<ref><pubmed>21543516</pubmed></ref><ref><pubmed>24363023</pubmed></ref><ref><pubmed>28192419</pubmed></ref> <ref><pubmed>29474909</pubmed></ref><ref><pubmed> 28818938 </pubmed></ref><ref><pubmed>29545511</pubmed></ref>。 | |||
===多様なプラットフォーム=== | ===多様なプラットフォーム=== | ||
細胞を分別するプラットフォームには、マイクロピペットによる捕獲、セルソーター、[[レーザー捕獲]]などを用いるマルチウェル法、あるいは半導体集積回路様の製作技術で作った流体回路を利用するFluidigm C1の装置(C1 Single- Cell Auto Prep | 細胞を分別するプラットフォームには、マイクロピペットによる捕獲、セルソーター、[[レーザー捕獲]]などを用いるマルチウェル法、あるいは半導体集積回路様の製作技術で作った流体回路を利用するFluidigm C1の装置(C1 Single- Cell Auto Prep | ||
38行目: | 38行目: | ||
scRNAseqのプラットフォームと方法について重要と考えられる進歩は、2015年、Harvard Medical Schoolの独立した2つのグループが、inDrops<ref><pubmed>26000487</pubmed></ref>そしてDrop-seq<ref><pubmed>26000488 </pubmed></ref>という類似した2つのハイスループットな方法を開発したことであろう(inDropsはT7RNAポリメラーゼ、Drop-seqはPCRで増幅)。これらの方法では、[[マイクロ流体力学]] (Microfluidics) 、 UMI(上述)と細胞ごとのバーコード(Cell Barcode)という2種類のDNAバーコーディング、そしてNGSと情報解析法を利用している。そして、多く細胞のサンプル調製の自動化と容易さから、1つの細胞あたりに要するコストを大幅に低下させることに成功した(Drop-seqは発表時で、1細胞あたり約5セント)。つまり、細胞1つずつをマイクロ流体力学によるエマルジョン作製技術を利用した装置に流入させ、その1細胞を1つのドロップレットに自動的に閉じ込める。そのドロップレット中には、ドロップレットごとにCell barcode/UMIとしてユニークなDNAバーコードを持つゲルビーズ(Gel Beads in Emulsion, GEMs)が入っており、それを足場に3’末端のみを標的にしたcDNA合成反応を実施することで、同じ細胞に含まれていた1分子のmRNAが同じCell barcodeを持つcDNAとして合成され、そのmRNA/cDNAが由来した細胞を識別できるということを利用している(図1)。 | scRNAseqのプラットフォームと方法について重要と考えられる進歩は、2015年、Harvard Medical Schoolの独立した2つのグループが、inDrops<ref><pubmed>26000487</pubmed></ref>そしてDrop-seq<ref><pubmed>26000488 </pubmed></ref>という類似した2つのハイスループットな方法を開発したことであろう(inDropsはT7RNAポリメラーゼ、Drop-seqはPCRで増幅)。これらの方法では、[[マイクロ流体力学]] (Microfluidics) 、 UMI(上述)と細胞ごとのバーコード(Cell Barcode)という2種類のDNAバーコーディング、そしてNGSと情報解析法を利用している。そして、多く細胞のサンプル調製の自動化と容易さから、1つの細胞あたりに要するコストを大幅に低下させることに成功した(Drop-seqは発表時で、1細胞あたり約5セント)。つまり、細胞1つずつをマイクロ流体力学によるエマルジョン作製技術を利用した装置に流入させ、その1細胞を1つのドロップレットに自動的に閉じ込める。そのドロップレット中には、ドロップレットごとにCell barcode/UMIとしてユニークなDNAバーコードを持つゲルビーズ(Gel Beads in Emulsion, GEMs)が入っており、それを足場に3’末端のみを標的にしたcDNA合成反応を実施することで、同じ細胞に含まれていた1分子のmRNAが同じCell barcodeを持つcDNAとして合成され、そのmRNA/cDNAが由来した細胞を識別できるということを利用している(図1)。 | ||
DropSeqはコストが低いが、細胞の取得率と検出感度が低い弱点がある。inDropsはDropSeqより細胞取得率が高く、パラメータを調整することにより、低レベルで発現される遺伝子の検出にも有利であるとされる<ref><pubmed>30472192</pubmed></ref>。DropSeqのセットアップはDolomite Bio ([https://www.dolomite-bio.com])、inDropは1 Cellbio社から販売されている[https://1cell-bio.com]。しかし、その後、10x Genomics社が同様の原理を用いた「Chromium」と命名された機器とそのための試薬を市販することで、多くの研究者が容易に利用できるようになっている<ref><pubmed>28091601</pubmed></ref>[https://www.10xgenomics.com/jp/]。Svenssonらによる最近のデータベース[https://doi.org/10.1101/742304], [http://www.nxn.se/single-cell-studies/gui]では、scRNAseqを用いた論文で用いられた方法について調査している。この数年、10x Genomics社Chromiumを用いた論文が飛躍的に増加している。10x Genomics社Chromiumのシステムは市販であるので導入が容易であり、DropSeqやinDropsに比べ多くの転写産物の検出が可能であるが、それらよりランニングコストは高価である<ref><pubmed>30472192</pubmed></ref>。なお、3’エンドリード法だけでなく、抗体やT 細胞レセプターのN末端側に位置する可変領域の配列決定が可能である5'末端のシーケンシングには5’エンドリード法が利用されることがある。 | |||
[[ファイル:scFig1.jpg|サムネイル|300px|'''図1.ドロップレット使用の3’エンドリード法 '''<br>組織から解離させた細胞それぞれを、マイクロ流体力学を利用した装置で、バーコードプライマーが結合したゲルビーズとともにドロップレットに封じ込める。ドロップレット中には、ドロップレットごとにCell barcode/UMIとしてユニークなDNA配列を持つゲルビーズ(GEMs)が入っており、それを足場にcDNA合成反応を実施することで、同じ細胞に含まれていたmRNAが同じCell barcodeを持つDNAとして合成され、それを増幅する。]] | [[ファイル:scFig1.jpg|サムネイル|300px|'''図1.ドロップレット使用の3’エンドリード法 '''<br>組織から解離させた細胞それぞれを、マイクロ流体力学を利用した装置で、バーコードプライマーが結合したゲルビーズとともにドロップレットに封じ込める。ドロップレット中には、ドロップレットごとにCell barcode/UMIとしてユニークなDNA配列を持つゲルビーズ(GEMs)が入っており、それを足場にcDNA合成反応を実施することで、同じ細胞に含まれていたmRNAが同じCell barcodeを持つDNAとして合成され、それを増幅する。]] | ||
==scRNAseqの実際== | ==scRNAseqの実際== | ||
ここでは主流になっている10x Genomics社のChromiumなどのドロップレットを用いた方法とSMART- | ここでは主流になっている10x Genomics社のChromiumなどのドロップレットを用いた方法とSMART-seqなどを用いた他のプラットフォームに共通する方法の実際について概説する。scRNAseqの利用には、4つのステップがある(図2)<ref><pubmed> 31217225</pubmed></ref><ref><pubmed>30089861</pubmed></ref>。1)個体や組織を採集し、そこから細胞あるいは細胞核を個別に解離された状態にすること。2)ドロップレット法やSMART-seq対応のプラットフォームなどによる個々の細胞からのライブラリーの作製とNGS。3)得られた配列情報の前処理(preprocessing)。4)下流解析と生物学的な情報を得るコンピューター生物学。これらのうち、2)の段階については、上に記述したように市販の機器や試薬を利用する機会が多くなっているので、詳細は説明しない | ||
[[ファイル:ScFig2c.jpg|サムネイル|500px|'''図2.scRNAseqの実際のステップ '''<br>細胞の単離、ライブラリ作製とNGS、データの前処理から次元圧縮、下流解析。図の一部は2016 DBCLS TogoTV、あるいはSeuratを用いて10x Genomics社のPBMCデータ([https://support.10xgenomics.com/single-cell-gene-expression/datasets]から執筆者が作製。]] | [[ファイル:ScFig2c.jpg|サムネイル|500px|'''図2.scRNAseqの実際のステップ '''<br>細胞の単離、ライブラリ作製とNGS、データの前処理から次元圧縮、下流解析。図の一部は2016 DBCLS TogoTV、あるいはSeuratを用いて10x Genomics社のPBMCデータ([https://support.10xgenomics.com/single-cell-gene-expression/datasets]から執筆者が作製。]] | ||
===組織からの細胞、細胞核の分離=== | ===組織からの細胞、細胞核の分離=== | ||
浮遊細胞(血液細胞など)ではない場合、物理的あるいは酵素処理などによって解離することで、生組織から状態の良い個々に分散した細胞を調製する必要がある。神経系組織の酵素処理には、パパインを用いる方法が広く用いられている<ref><pubmed>29970990</pubmed></ref>。ここで、しばしば問題となるのが、酵素処理による短時間加温や機械的刺激で、発現量が変化する遺伝子が存在することである<ref><pubmed>27090946</pubmed></ref>。特に、脳の[[ミクログリア]]の解析には、低温下で組織をホモゲナイズするなどの工夫が必要であった<ref><pubmed>30471926</pubmed></ref>。また、このような現象を抑制するために、酵素処理時に転写阻害剤である[[アクチノマイシン]]で処理したり<ref><pubmed>29024657</pubmed></ref>、ヒマラヤ氷河から得られた細菌Bacillus licheniformisから得られた低温プロテアーゼを用いる方法も報告されている<ref><pubmed>28851704</pubmed></ref><ref><pubmed>31623682</pubmed></ref>。また、細胞解離後に、メタノールで固定しscRNAseqに使用したり<ref><pubmed>28526029</pubmed></ref>、クロスリンカーを用いる方法もある<ref><pubmed>29391536</pubmed></ref>。 | 浮遊細胞(血液細胞など)ではない場合、物理的あるいは酵素処理などによって解離することで、生組織から状態の良い個々に分散した細胞を調製する必要がある。神経系組織の酵素処理には、パパインを用いる方法が広く用いられている<ref><pubmed>29970990</pubmed></ref>。ここで、しばしば問題となるのが、酵素処理による短時間加温や機械的刺激で、発現量が変化する遺伝子が存在することである<ref><pubmed>27090946</pubmed></ref>。特に、脳の[[ミクログリア]]の解析には、低温下で組織をホモゲナイズするなどの工夫が必要であった<ref><pubmed>30471926</pubmed></ref>。また、このような現象を抑制するために、酵素処理時に転写阻害剤である[[アクチノマイシン]]で処理したり<ref><pubmed>29024657</pubmed></ref>、ヒマラヤ氷河から得られた細菌Bacillus licheniformisから得られた低温プロテアーゼを用いる方法も報告されている<ref><pubmed>28851704</pubmed></ref><ref><pubmed>31623682</pubmed></ref>。また、細胞解離後に、メタノールで固定しscRNAseqに使用したり<ref><pubmed>28526029</pubmed></ref>、クロスリンカーを用いる方法もある<ref><pubmed>29391536</pubmed></ref>。 | ||
単離した細胞は、そのまま10x GenomicsのChromiumのプラットフォームに導入することができるが、細胞表面分子マーカーに対する抗体や蛍光タンパク質レポーターなどを用いたFACS、[[パニング]]、MACS(磁気ビーズカラム)などによって、細胞の選択的濃縮や除去を行う場合もある。更に、抗体に抗体表示バーコードDNAをカップリングさせるCITE-seq(Cellular Indexing of Transcriptomes and Epitopes by Sequencing) | 単離した細胞は、そのまま10x GenomicsのChromiumのプラットフォームに導入することができるが、細胞表面分子マーカーに対する抗体や蛍光タンパク質レポーターなどを用いたFACS、[[パニング]]、MACS(磁気ビーズカラム)などによって、細胞の選択的濃縮や除去を行う場合もある。更に、抗体に抗体表示バーコードDNAをカップリングさせるCITE-seq(Cellular Indexing of Transcriptomes and Epitopes by Sequencing) については、下記の「統合解析」でも述べる。 | ||
なお、ヒト組織や希少生物などから生細胞を得ることは困難なことが多い。この場合、scRNAseqの変法として、凍結した組織から、各細胞由来の核を調製し、核内のmRNAを分析するsnRNAseq (single-nucleus RNA-seq)が利用されている。ただ、snRNAseqでは、FACSなどによる特定細胞集団の分離が困難であることが多い。また、細胞質を持つ生細胞を利用したscRNAseqとは違って、スプライシングの途上にある未成熟な核内転写産物を検出すること、更に検出できる遺伝子数も少なく、同等な結果が必ずしも得られない<ref><pubmed>24248345</pubmed></ref><ref><pubmed>26890679</pubmed></ref> <ref><pubmed>27471252</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>29220646</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>30586455</pubmed></ref><ref><pubmed>28729663</pubmed></ref><ref><pubmed>31728515</pubmed></ref><ref><pubmed>32341560</pubmed></ref> <ref><pubmed>32518403</pubmed></ref>。一方で、snRNA-seqでは、組織をそのまま凍結することから開始することが可能であるので、上述したscRNAseqの問題である細胞解離酵素による処理などを避けることができる。更に、核を用いることで、大きな細胞体はマイクロ流体力学の流路で詰まりやすいなど、特に神経細胞で顕著である細胞の形状の多様性に伴うバイアスを減らすことができるといったメリットもある。こうしたプロトコールの一部は、protocols.ioのHuman Cell Atlasのグループ[https://www.protocols.io/groups/hca]で公開されている。 | なお、ヒト組織や希少生物などから生細胞を得ることは困難なことが多い。この場合、scRNAseqの変法として、凍結した組織から、各細胞由来の核を調製し、核内のmRNAを分析するsnRNAseq (single-nucleus RNA-seq)が利用されている。ただ、snRNAseqでは、FACSなどによる特定細胞集団の分離が困難であることが多い。また、細胞質を持つ生細胞を利用したscRNAseqとは違って、スプライシングの途上にある未成熟な核内転写産物を検出すること、更に検出できる遺伝子数も少なく、同等な結果が必ずしも得られない<ref><pubmed>24248345</pubmed></ref><ref><pubmed>26890679</pubmed></ref> <ref><pubmed>27471252</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>29220646</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>30586455</pubmed></ref><ref><pubmed>28729663</pubmed></ref><ref><pubmed>31728515</pubmed></ref><ref><pubmed>32341560</pubmed></ref> <ref><pubmed>32518403</pubmed></ref>。一方で、snRNA-seqでは、組織をそのまま凍結することから開始することが可能であるので、上述したscRNAseqの問題である細胞解離酵素による処理などを避けることができる。更に、核を用いることで、大きな細胞体はマイクロ流体力学の流路で詰まりやすいなど、特に神経細胞で顕著である細胞の形状の多様性に伴うバイアスを減らすことができるといったメリットもある。こうしたプロトコールの一部は、protocols.ioのHuman Cell Atlasのグループ[https://www.protocols.io/groups/hca]で公開されている。 | ||
55行目: | 55行目: | ||
10x Genomics社のChromium、Illumina社のNGSを利用した場合、Cell Rangerのmkrefコマンド(Linux上で作動, [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/tutorial_mr])などにより、各生物種ごとのレファレンス配列リスト([https://www.ncbi.nlm.nih.gov/grc]、マウスやヒトでは既製のものを利用できる)などを参考にしながら、細胞と転写産物量の対応マトリックスを作製する。その後のデータの処理についても、10x Genomics社がソフトウェアLoupeを提供している。しかしながら、その後の下流解析を考慮して、[[R]], [[Python]], MATLABなどのデータ解析のための汎用プログラミング言語やコードで扱えるオブジェクトに変換するのが通常である。 | 10x Genomics社のChromium、Illumina社のNGSを利用した場合、Cell Rangerのmkrefコマンド(Linux上で作動, [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/tutorial_mr])などにより、各生物種ごとのレファレンス配列リスト([https://www.ncbi.nlm.nih.gov/grc]、マウスやヒトでは既製のものを利用できる)などを参考にしながら、細胞と転写産物量の対応マトリックスを作製する。その後のデータの処理についても、10x Genomics社がソフトウェアLoupeを提供している。しかしながら、その後の下流解析を考慮して、[[R]], [[Python]], MATLABなどのデータ解析のための汎用プログラミング言語やコードで扱えるオブジェクトに変換するのが通常である。 | ||
scRNAseq解析のためには、数多くのツールが公開されている。これらのツールは、バージョンが更新されたり、新しいものに置き換えられることがあるので、実際に利用する場合は最新の動向に注意を払う必要がある。scRNAseqの解析に必要なツールは、scRNA-tools [https://www.scrna-tools.org], Awesome single cell [https://github.com/seandavi/awesome-single-cell], Bioconductor[https://www.bioconductor.org]などで紹介されており、ほとんどがダウンロード可能である。また、bioRxivなどの査読前のプレプリントサーバで公開されて、随時試用、評価されていくものが多く、scRNAseqのデータ(下記参考)とともに、オープンサイエンス実践の好例となっている。 | |||
====Seurat==== | ====Seurat==== | ||
ここでは、scRNAseqデータ解析のために最もよく利用されているRを用いたパッケージ「Seurat」<ref><pubmed> 29608179 </pubmed></ref> <ref><pubmed> 31178118 </pubmed></ref>を中心に紹介しておきたい。なお、一部の解析操作は、University of WashingtonのCole Trapnell研究室で開発されてきた軌道推定(下記参考)によく使用されるMonocle3でも可能である([https://cole-trapnell-lab.github.io/monocle3/])。Pythonを利用したものでは、ドイツ・ミュンヘンInstitute of Computational Biologyの Fabian Theisらが開発しているScanpyが有名である<ref><pubmed> 29409532</pubmed></ref>。 | ここでは、scRNAseqデータ解析のために最もよく利用されているRを用いたパッケージ「Seurat」<ref><pubmed> 29608179 </pubmed></ref> <ref><pubmed> 31178118 </pubmed></ref>を中心に紹介しておきたい。なお、一部の解析操作は、University of WashingtonのCole Trapnell研究室で開発されてきた軌道推定(下記参考)によく使用されるMonocle3でも可能である([https://cole-trapnell-lab.github.io/monocle3/])。Pythonを利用したものでは、ドイツ・ミュンヘンInstitute of Computational Biologyの Fabian Theisらが開発しているScanpyが有名である<ref><pubmed> 29409532</pubmed></ref>。 | ||
89行目: | 89行目: | ||
scRNAseqの神経系での利用については、次々と新しい論文やプレプリントが発表されており、ここではscRNAseqで得られてきた情報の典型例を紹介することにとどめる。 | scRNAseqの神経系での利用については、次々と新しい論文やプレプリントが発表されており、ここではscRNAseqで得られてきた情報の典型例を紹介することにとどめる。 | ||
[[大脳皮質]]には、[[錐体細胞]]や[[非錐体細胞]]などの神経細胞や様々なグリア細胞などが見られ、古くから神経細胞タイプの識別が行われてきた。初期のFluidigm | [[大脳皮質]]には、[[錐体細胞]]や[[非錐体細胞]]などの神経細胞や様々なグリア細胞などが見られ、古くから神経細胞タイプの識別が行われてきた。初期のFluidigm C1を用いたscRNAseq技術でも、マウス皮質の小規模な細胞数を分類した研究で、これまで知られていた主要な神経細胞タイプとは違うタイプが見つかりscRNAseqの有効性が示された<ref><pubmed>25700174</pubmed></ref>。その後のドロップレット使用の3’エンドリード法を利用した多数の細胞数の解析で、更に多数の神経細胞のタイプが見つかっている<ref><pubmed>32839617</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>30096299</pubmed></ref><ref><pubmed>30096314</pubmed></ref><ref><pubmed>30382198</pubmed></ref><ref><pubmed>29320739</pubmed></ref><ref><pubmed>28846088</pubmed></ref>[https://doi.org/10.1101/2020.03.14.991018][https://doi.org/10.1101/2020.06.04.105700] [https://doi.org/10.1101/2020.07.02.184051]。特に、GABA作動性介在神経細胞タイプの多様性とその発生<ref><pubmed>28942923</pubmed></ref><ref><pubmed>28134272</pubmed></ref><ref><pubmed>29472441</pubmed></ref><ref><pubmed>29513653</pubmed></ref>についての、これまでの組織化学的な研究からは得られていなかった多くの情報は重要であろう。また、初期の発生過程<ref><pubmed>26940868</pubmed></ref><ref><pubmed>30485812</pubmed></ref><ref><pubmed>31073041</pubmed></ref><ref><pubmed>30635555</pubmed></ref><ref><pubmed>30625322</pubmed></ref>、老化<ref><pubmed>31551601</pubmed></ref>の理解が、scRNASeq技術を利用することで進んでいる。更に、[[神経活動]]や[[臨界期]]に伴い変化するmRNAも細胞ごとに調査され興味深い<ref><pubmed>29230054</pubmed></ref> <ref><pubmed>32404418</pubmed></ref>。 ヒトを含めた霊長類の大脳についても発達段階を含めてscRNAseqが適用されてきている<ref><pubmed>26060301</pubmed></ref><ref><pubmed>27339989</pubmed></ref><ref><pubmed>29539641</pubmed></ref><ref><pubmed>29217575</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>29227469</pubmed></ref><ref><pubmed>31303374</pubmed></ref><ref><pubmed>29867213</pubmed></ref><ref><pubmed>31435019</pubmed></ref><ref><pubmed>32424074</pubmed></ref> [https://doi.org/10.1101/709501][https://doi.org/10.1101/2020.03.31.016972][https://doi.org/10.1101/2020.04.23.056390]。ヒトや霊長類に特徴的とされる[[島]]のvon Economo神経細胞(紡錘細胞)のような希少な神経細胞のscRNAseqにも成功している<ref><pubmed>32127543</pubmed></ref>。 | ||
[[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]](足底核)<ref><pubmed>28384468</pubmed></ref> 、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref> <ref><pubmed>27991900</pubmed></ref><ref><pubmed>30385464</pubmed></ref> <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref> <ref><pubmed>30718509</pubmed></ref> 、[[手綱]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が報告されてきている。例えば、構成する細胞についての情報が詳細に研究されてきたと思われていたマウスの小脳においても、分子層にこれまでの星状細胞、バスケット細胞というカテゴリーとは違ったギャップジャンクションに特徴を持つ2種類の神経細胞があることが示唆されている[https://doi.org/10.1101/2020.03.04.976407]。 | [[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]](足底核)<ref><pubmed>28384468</pubmed></ref> 、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref> <ref><pubmed>27991900</pubmed></ref><ref><pubmed>30385464</pubmed></ref> <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref> <ref><pubmed>30718509</pubmed></ref> 、[[手綱]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が報告されてきている。例えば、構成する細胞についての情報が詳細に研究されてきたと思われていたマウスの小脳においても、分子層にこれまでの星状細胞、バスケット細胞というカテゴリーとは違ったギャップジャンクションに特徴を持つ2種類の神経細胞があることが示唆されている[https://doi.org/10.1101/2020.03.04.976407]。 | ||
112行目: | 112行目: | ||
===空間トランスクリプトミクス=== | ===空間トランスクリプトミクス=== | ||
多数の細胞を扱うscRNAseqの弱点は、組織から細胞や細胞核を解離する必要があるので、その細胞が存在していた解剖学的あるいは空間的な位置の情報を消去してしまうということである。組織切片におけるタンパク質などの分布は免疫組織化学、mRNAの分布はin situ hybridizationで検出することができるが、数多くのmRNAの分布を情報処理技術と組み合わせ一気に同定する方法がscRNAseqと同様に開発されてきている(Slide-seq<ref><pubmed>30923225</pubmed></ref> | 多数の細胞を扱うscRNAseqの弱点は、組織から細胞や細胞核を解離する必要があるので、その細胞が存在していた解剖学的あるいは空間的な位置の情報を消去してしまうということである。組織切片におけるタンパク質などの分布は免疫組織化学、mRNAの分布はin situ hybridizationで検出することができるが、数多くのmRNAの分布を情報処理技術と組み合わせ一気に同定する方法がscRNAseqと同様に開発されてきている(Slide-seq<ref><pubmed>30923225</pubmed></ref><ref><pubmed> 33288904</pubmed></ref>、HDST<ref><pubmed>31501547</pubmed></ref>、Expansion sequencing[http://doi.org/10.1101/2020.05.13.094268]など<ref><pubmed>27365449</pubmed></ref>, <ref><pubmed>31932730</pubmed></ref> <ref><pubmed>30948552</pubmed></ref>)、更に10x Genomics社が市販するVisiumなどがある。現状では、大きな組織の空間トランスクリプトミクスは、空間解像度は限定されており、技術普及の観点からも課題が多い。しかし、そのデータを解析するためのアルゴリズム<ref><pubmed>29553578</pubmed></ref><ref><pubmed>29553579</pubmed></ref><ref><pubmed>32350282</pubmed></ref> [https://doi.org/10.1101/757096][https://doi.org/10.1101/701680] [https://doi.org/10.1101/431957]、 | ||
更にMerFish <ref><pubmed>25858977</pubmed></ref>、corrFISH<ref><pubmed>27271198</pubmed></ref>のように、subcellularレベルで多数のmRNAを検出する方法が多数開発されてきており(文献:<ref><pubmed>25549890</pubmed></ref> osmFISH<ref><pubmed>30377364</pubmed></ref> 30377364、STARmap (spatially-resolved transcript amplicon readout mapping) <ref><pubmed>29930089</pubmed></ref>、seqFISH+<ref><pubmed>27764670</pubmed></ref>、pciSeq(probabilistic cell typing by in situ sequencing)[https://doi.org/10.1101/431957]、DSP(Digital Spatial Profiling) <ref><pubmed>32393914</pubmed></ref>、scRNAseqと組み合わせることで、その弱点を補う空間トランスクリプトミクスにも利用され始め<ref><pubmed>30385464</pubmed></ref>[https://doi.org/10.1101/2020.06.04.105700]、今後の発展が期待される分野である。 | 更にMerFish <ref><pubmed>25858977</pubmed></ref>、corrFISH<ref><pubmed>27271198</pubmed></ref>のように、subcellularレベルで多数のmRNAを検出する方法が多数開発されてきており(文献:<ref><pubmed>25549890</pubmed></ref> osmFISH<ref><pubmed>30377364</pubmed></ref> 30377364、STARmap (spatially-resolved transcript amplicon readout mapping) <ref><pubmed>29930089</pubmed></ref>、seqFISH+<ref><pubmed>27764670</pubmed></ref>、pciSeq(probabilistic cell typing by in situ sequencing)[https://doi.org/10.1101/431957]、DSP(Digital Spatial Profiling) <ref><pubmed>32393914</pubmed></ref>、scRNAseqと組み合わせることで、その弱点を補う空間トランスクリプトミクスにも利用され始め<ref><pubmed>30385464</pubmed></ref>[https://doi.org/10.1101/2020.06.04.105700]、今後の発展が期待される分野である。 | ||
===統合解析 === | ===統合解析 === |