「細胞骨格」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
== '''概要''' ==
== '''概要''' ==


細胞質内の蛋白性の線維状の構造で、微小管(microtubules)、中間径フィラメント(intermediate filaments)、アクチンフィラメント(actin filaments)の三種類とその結合蛋白からなる。
真核細胞質内の蛋白性の線維状の構造で、微小管(microtubules)、中間径フィラメント(intermediate filaments)、アクチンフィラメント(actin filaments)の三種類とその結合蛋白からなる。近年、原核細胞にもこれらに相同性のある蛋白質が見つかっている。


<br>
<br>
11行目: 11行目:
== '''歴史''' ==
== '''歴史''' ==


細胞骨格蛋白の研究は、常に形態学的研究の進展とともにあった。真核細胞の細胞質にはトライトン(Triton)不溶性の線維構造があると分かり、これが“細胞骨格”分画と呼ばれ、電子顕微鏡による研究が行われるようになった。生物電子顕微鏡のパイオニアであり細胞生物学の創始者のひとりであるK.Porterは臨界点乾燥法を用いて細胞質には複雑なネットワークmicrotrabecula構造があるとした。現在はこの説は退けられているが、細胞質内の蛋白性の線維は、微小管(直径25nm)、中間径フィラメント(10nm)、微細線維(マイクロフィラメント)(7nm) の三種類に分類されている。微細線維(マイクロフィラメント)にはミオシン頭部が結合するので、これが筋肉で研究されてきたアクチンフィラメントに相当するものであることが分かった(注意深い議論をする場合は、その成分がアクチンであると証明されるまでは、マイクロフィラメントmicrofilamentsという呼称を用いる)。一方、ミオシン頭部が全く結合しない中間径フィラメントが別に存在することが確立した。また、1970年代以降、抗体を用いた蛍光抗体光学顕微鏡法は、細胞骨格蛋白の細胞内の3次元構築を明らかにした。1980年代、急速凍結ディープエッチ法は電子顕微鏡レベルで細胞骨格の三次元的構成を示した。生化学的研究の進展は、その構成蛋白および関連蛋白を明らかにし、それら線維の重合脱重を試験管内で再現した。これに対応し、蛍光(GFPを含む)標識した構成蛋白とビデオ顕微鏡を用いて生細胞内での細胞骨格成分の動態が観察できるようになった。ビデオ顕微鏡は、この分野の大きな進展である軸索輸送のモーター分子であるキネシンの発見(1985)をもたらした。昔から知られてきたミオシンとダイニンについても、新たな類縁蛋白群が発見された。このモーター分子のアッセイやメカニズムの研究に、一分子イメージングなど光学顕微鏡技術の進展が大きく寄与した。
細胞骨格蛋白の研究は、常に形態学的研究の進展とともにあった。真核細胞の細胞質にはトライトン(Triton)不溶性の線維構造があると分かり、これが“細胞骨格”分画と呼ばれ、電子顕微鏡等による研究が行われるようになった。生物電子顕微鏡のパイオニアであり細胞生物学の創始者のひとりであるK.Porterは臨界点乾燥法を用いて細胞質には複雑な網目状の構造microtrabeculaがあるとした。現在はこの説は退けられているが、細胞質内の蛋白性の線維は、微小管(直径25nm)、中間径フィラメント(10nm)、微細線維(マイクロフィラメント)(6nm) の三種類に分類されている。微細線維(マイクロフィラメント)にはミオシン頭部が結合するので、これが筋肉で研究されてきたアクチンフィラメントに相当するものであることが分かった(注意深い議論をする場合は、その成分がアクチンであると証明されるまでは、マイクロフィラメントmicrofilamentsという呼称を用いる)。一方、ミオシン頭部が全く結合しない中間径フィラメントが別に存在することが確立した。また、1970年代以降、抗体を用いた蛍光抗体光学顕微鏡法は、細胞骨格蛋白の細胞内の3次元構築を明らかにした。1980年代、急速凍結ディープエッチ法は電子顕微鏡レベルで細胞骨格の三次元的構成を示した。生化学的研究の進展は、その構成蛋白および関連蛋白を明らかにし、それら線維の重合脱重を試験管内で再現した。これに対応し、蛍光(GFPを含む)標識した構成蛋白とビデオ顕微鏡を用いて生細胞内での細胞骨格成分の動態が観察できるようになった。ビデオ顕微鏡は、この分野の大きな進展である軸索輸送のモーター分子であるキネシンの発見(1985)をもたらした。昔から知られてきたミオシンとダイニンについても、新たな類縁蛋白群が発見された。このモーター分子のアッセイや細胞骨格の重合脱重合のメカニズムの研究に、一分子イメージングなど光学顕微鏡技術の進展が大きく寄与している。


<br>
<br>
22行目: 22行目:


----
----
=== '''微小管(微細管)'''===
=== 微小管(微細管)===
----
----
;線維のサイズ:直径25nm
;線維のサイズ:直径25nm
;線維の特徴:中空の管状の線維。極性あり(重合の早い側がプラス)
;線維の特徴:中空の管状の線維。極性あり(重合の早い側がプラス)
;構成成分:GTP結合蛋白であるチュブリン(tubulin)α、βの2量体(50kd)
;構成成分:GTP結合蛋白であるチュブリン(tubulin)α、βの2量体(50kd)
;結合・関連蛋白:タウtauは遺伝性アルツハイマー病の原因遺伝子である。MAP2は樹状突起と細胞体のマーカーとなる。この上を走るモーター分子にキネシン、ダイニンおよびその類縁蛋白がある。
;結合・関連蛋白:タウtauは遺伝性アルツハイマー病の原因遺伝子の1つである。MAP2は樹状突起と細胞体のマーカーとなる。微小管の上を走るモーター分子にキネシン、ダイニンおよびその類縁蛋白がある。
;細胞内分布と機能:一般的な細胞では、中心体から放射状に細胞質全体に放射するほか、精子の鞭毛や、分裂細胞の紡錘糸の主要成分である。
;細胞内分布と機能:一般的な細胞では、中心体から放射状に細胞質全体に放射するほか、精子の鞭毛や、分裂細胞の紡錘糸の主要成分である。
;神経細胞での特徴:軸索や樹状突起の中心部分を何本かの束をつくって突起に平行に走行し、微小管上のモーター分子キネシンやダイニンによるオルガネラや小胞輸送のためのレールの役割を果たしている。軸索輸送に重要な役割を果たす。
;神経細胞での特徴:軸索や樹状突起の中心部分を何本かの束をつくって突起に平行に走行し、微小管上のモーター分子キネシンやダイニンによるオルガネラや小胞輸送のためのレールの役割を果たしている。軸索輸送に重要な役割を果たす。
;その他:中空なのでこの中を何かが運ばれるという考えがあるが、根拠が少ない。
;その他:中空なのでこの中を何かが運ばれるという考えが脳科学の啓蒙書にあるが、根拠が少ない。注意すべきは、一般の神経細胞では微小管は細胞膜直下には殆どない点である。


<br>
<br>


----
----
=== '''中間径フィラメント''' ===
=== 中間径フィラメント ===
----
----
;線維のサイズ:直径10nm   
;線維のサイズ:直径10nm   
46行目: 46行目:


----
----
=== '''アクチンフィラメント(微細繊維、マイクロフィラメント)''' ===
=== アクチンフィラメント(微細繊維、マイクロフィラメント) ===
----
----
;線維のサイズ:直径7nm  
;線維のサイズ:直径7nm  
66行目: 66行目:


Bruce Alberts et al. <br>
Bruce Alberts et al. <br>
Molecular Biology of the Cell 3rd ed.1994<br>
Molecular Biology of the Cell <br>
Garland Publishing Inc. NewYork CF 4th ed 2002<br>
Garland Publishing Inc. NewYork CF 4th ed 2002<br>


113

回編集

案内メニュー