135
回編集
Kentaro Katahira (トーク | 投稿記録) 細 (→モデルの定式化) |
Kentaro Katahira (トーク | 投稿記録) |
||
48行目: | 48行目: | ||
したがって,標準的なドリフト拡散モデルのパラメータは,開始点の平均 (<math>z</math>),開始点の試行間変動 (<math>s_{z}</math>),ドリフト率の平均 (<math>v</math>),ドリフト率の標準偏差 (<math>\eta</math>),境界 (<math>a</math>),非決定時間の平均 (<math>T_{er}</math>),非決定時間の試行間変動 (<math>s_{t}</math>) の7つとなる。 | したがって,標準的なドリフト拡散モデルのパラメータは,開始点の平均 (<math>z</math>),開始点の試行間変動 (<math>s_{z}</math>),ドリフト率の平均 (<math>v</math>),ドリフト率の標準偏差 (<math>\eta</math>),境界 (<math>a</math>),非決定時間の平均 (<math>T_{er}</math>),非決定時間の試行間変動 (<math>s_{t}</math>) の7つとなる。 | ||
== | ==反応時間分布および選択確率の解析解== | ||
二つの選択に関する上記のモデルにおいて,各パラメータを固定した場合 (試行間変動は仮定しない場合),それぞれの選択肢を選ぶ確率,およびその反応時間の分布は次のように解析的に導出される <ref name=Ratclif1978 />。下側の境界 (0) に到達し,反応Bが起こる確率は, | |||
<math>\frac{e^{-2va/\sigma^2}-e^{-2vz/\sigma^2}}{e^{-2va/\sigma^2}-1}</math> | <math>\frac{e^{-2va/\sigma^2}-e^{-2vz/\sigma^2}}{e^{-2va/\sigma^2}-1}</math> | ||
60行目: | 60行目: | ||
<math>\frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin (\frac{\pi z k}{a}) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math> | <math>\frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin (\frac{\pi z k}{a}) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math> | ||
で与えられる。境界<math>a</math>に到達し反応Aが起こり,かつその反応時間が<math>t</math>となる確率密度は,上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math> | で与えられる。境界<math>a</math>に到達し反応Aが起こり,かつその反応時間が<math>t</math>となる確率密度は,上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math>で置き換えることで得られる。図2の上下の曲線はこれらの式により得られた条件付きの確率密度関数である。シミュレーションにより得た反応時間のヒストグラムもサンプルが増えるにつれてこの分布に近づいていくことがわかる。 | ||
==モデルフィッティング== | ==モデルフィッティング== |
回編集