「視覚系の順逆変換モデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
21行目: 21行目:
</math>
</math>


と書くことができる。この事後エネルギーを最小化することによって最大事後確率推定ができる(たとえば、川人,1995<ref name=川人1996>川人 光男 (1996). 『脳の計算理論』 産業図書.</ref>:乾,2004<ref name=乾2004>'''乾 敏郎 (2004).'''<br>視覚計算とマルコフ確率場. 石黒 真木夫・松本 隆・乾 敏郎・田邉 國士(著)「統計科学のフロンティア」第4巻『階層ベイズモデルとその周辺-時系列・画像・認知への応用-』 ''岩波書店'', 171-233.</ref>参照)。
と書くことができる。この事後エネルギーを最小化することによって最大事後確率推定ができる(たとえば、文献<ref name=川人1996>'''川人 光男 (1996).'''<br>『脳の計算理論』 産業図書.</ref><ref name=乾2004>'''乾 敏郎 (2004).'''<br>視覚計算とマルコフ確率場. 石黒 真木夫・松本 隆・乾 敏郎・田邉 國士(著)「統計科学のフロンティア」第4巻『階層ベイズモデルとその周辺-時系列・画像・認知への応用-』 ''岩波書店'', 171-233.</ref>参照)。


 これを解くために、視覚大脳皮質はその並列階層構造に上式右辺の画像生成過程の近似逆変換 と順変換 を埋め込んでいると仮定する。具体的には、
 これを解くために、視覚大脳皮質はその並列階層構造に上式右辺の画像生成過程の近似逆変換 と順変換 を埋め込んでいると仮定する。具体的には、
34行目: 34行目:
S(0)=R^\#(I)
S(0)=R^\#(I)
</math>
</math>
:<math>
:<math>
\frac{dS(t)}{dt}=R^\#\{I-r(S)\}-\frac{\partial U(S)}{\partial U}
\frac{dS(t)}{dt}=R^\#\{I-r(S)\}-\frac{\partial U(S)}{\partial U}
39行目: 40行目:
 図では,2次元画像データ<math>I</math>は視覚下位中枢に,視覚世界の様子<math>S</math>は視覚上位中枢に表現されている.このモデルは視覚下位中枢を折返しにして鏡像対称となっている.このとき、領野間の前向きと後ろ向きの結合ループを信号が循環する間に正しい解に到達することが示された。
 図では,2次元画像データ<math>I</math>は視覚下位中枢に,視覚世界の様子<math>S</math>は視覚上位中枢に表現されている.このモデルは視覚下位中枢を折返しにして鏡像対称となっている.このとき、領野間の前向きと後ろ向きの結合ループを信号が循環する間に正しい解に到達することが示された。


 図に示したモデルは、<math>S</math> をひとまとめにして記述したモデルである.実際には、<math>s_1</math>から<math>s_m</math>が,一次視覚野から高次視覚野で別々に表現されており、各階層間で上記の順逆変換のループが働いて各属性が推定されると考えられている。これらの計算過程やそれを支持する生理学や解剖学の知見については、川人・乾 (1990) <ref name=川人1990></ref>や乾 (1993) <ref name=乾1993>乾 敏郎 (1993).<br>『Q&Aでわかる脳と視覚-人間からロボットまで』 サイエンス社.</ref>を参照。
 図に示したモデルは、<math>S</math> をひとまとめにして記述したモデルである.実際には、<math>s_1</math>から<math>s_m</math>が,一次視覚野から高次視覚野で別々に表現されており、各階層間で上記の順逆変換のループが働いて各属性が推定されると考えられている。これらの計算過程やそれを支持する生理学や解剖学の知見については、文献<ref name=川人1990></ref><ref name=乾1993>'''乾 敏郎 (1993).'''<br>『Q&Aでわかる脳と視覚-人間からロボットまで』 サイエンス社.</ref>を参照。


 なお、知覚の計算を行うときには前向きと後ろ向きの神経回路が用いられるが、後ろ向きの結合は、順光学なので仮に外部刺激による信号がないときに働けば、知覚時と同じ活動を再現することが可能である。つまりこのような順逆変換が学習されれば(彼らの理論では学習アルゴリズムも与えている)外界の情報の処理と内的イメージの生成が同時に可能になるのである。具体的な視覚問題に適用された例は、Kawato, M., Hayakawa, H., and Inui, T. (1993)<ref> Kawato, M., Hayakawa, H., & Inui, T. (1993). A forward-inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4, 415-422. doi: 10.1088/0954-898X_4_4_001</ref>にある。なおこの理論は、Fristonの脳の統一理論である自由エネルギー原理において拡張された<ref><pubmed>17097864</pubmed></ref><ref>乾 敏郎・阪口 豊 (2020). <br>『脳の大統一理論 -自由エネルギー原理とは何か-』 岩波書店.</ref>(Friston, 2006: 乾・阪口, 2020)。
 なお、知覚の計算を行うときには前向きと後ろ向きの神経回路が用いられるが、後ろ向きの結合は、順光学なので仮に外部刺激による信号がないときに働けば、知覚時と同じ活動を再現することが可能である。つまりこのような順逆変換が学習されれば(彼らの理論では学習アルゴリズムも与えている)外界の情報の処理と内的イメージの生成が同時に可能になるのである。具体的な視覚問題に適用された例は、Kawato, M., Hayakawa, H., and Inui, T. (1993)<ref>'''Kawato, M., Hayakawa, H., & Inui, T. (1993).'''<br>A forward-inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4, 415-422. doi: 10.1088/0954-898X_4_4_001</ref>にある。なおこの理論は、Fristonの脳の統一理論である自由エネルギー原理において拡張された<ref><pubmed>17097864</pubmed></ref><ref>'''乾 敏郎・阪口 豊 (2020).'''<br>『脳の大統一理論 -自由エネルギー原理とは何か-』 岩波書店.</ref>


   
   

案内メニュー