16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
17行目: | 17行目: | ||
から事後確率を最大にする原因を特定することによって推論する(これを最大事後確率推定と呼ぶ)。事前確率は先験的知識である。そして、脳は高速に最大事後確率推定によって網膜像から外界の状態や構造を推定していると考えられた。一方、我々が正しく外界を知覚できるのは、一般の自然界で成立する何らかの制約条件を用いて、この逆問題(不良設定問題)を解いているからだと考えられている([[逆光学]];inverse optics)。 | から事後確率を最大にする原因を特定することによって推論する(これを最大事後確率推定と呼ぶ)。事前確率は先験的知識である。そして、脳は高速に最大事後確率推定によって網膜像から外界の状態や構造を推定していると考えられた。一方、我々が正しく外界を知覚できるのは、一般の自然界で成立する何らかの制約条件を用いて、この逆問題(不良設定問題)を解いているからだと考えられている([[逆光学]];inverse optics)。 | ||
川人と乾 (1990)<ref name=川人1990>'''川人 光男・乾 敏郎 (1990).'''<br> | 川人と乾 (1990)<ref name=川人1990>'''川人 光男・乾 敏郎 (1990).'''<br>視覚大脳皮質の計算理論。電子情報通信学会論文誌D-II, 73:1111-1121。</ref>は以下のような理論を提案した。まずHorn (1975) <ref>'''Horn, B. K. P. (1975).'''<br>Obtaining shape from shading information. In: Winston, P. H. (Ed.) The Psychology of Computer Vision. New York, ''McGraw-Hill.'' 115-155.</ref>の[[画像放射照度方程式]](image irradiance equation)を一般化した次の[[画像生成方程式]]を基本に考える。 | ||
:<math> | :<math> | ||
I(\mu, x, y, \lambda, t)=R(s_1, s_2..., s_m) | I(\mu, x, y, \lambda, t)=R(s_1, s_2..., s_m) | ||
30行目: | 30行目: | ||
</math> | </math> | ||
と書くことができる。この事後エネルギーを最小化することによって最大事後確率推定ができる(たとえば、文献<ref name=川人1996>'''川人 光男 (1996).'''<br>『脳の計算理論』 | と書くことができる。この事後エネルギーを最小化することによって最大事後確率推定ができる(たとえば、文献<ref name=川人1996>'''川人 光男 (1996).'''<br>『脳の計算理論』 産業図書。</ref><ref name=乾2004>'''乾 敏郎 (2004).'''<br>視覚計算とマルコフ確率場。 石黒 真木夫・松本 隆・乾 敏郎・田邉 國士(著)「統計科学のフロンティア」第4巻『階層ベイズモデルとその周辺-時系列・画像・認知への応用-』 ''岩波書店'', 171-233.</ref>参照)。 | ||
これを解くために、視覚大脳皮質はその並列階層構造に上式右辺の画像生成過程の近似逆変換<math>R^\#</math>と順変換<math>R</math>を埋め込んでいると仮定する。具体的には、 | これを解くために、視覚大脳皮質はその並列階層構造に上式右辺の画像生成過程の近似逆変換<math>R^\#</math>と順変換<math>R</math>を埋め込んでいると仮定する。具体的には、 | ||
47行目: | 47行目: | ||
\frac{dS(t)}{dt}=R^\#\{I-r(S)\}-\frac{\partial U(S)}{\partial U} | \frac{dS(t)}{dt}=R^\#\{I-r(S)\}-\frac{\partial U(S)}{\partial U} | ||
</math> | </math> | ||
図では、2次元画像データ<math>I</math>は視覚下位中枢に、視覚世界の様子<math>S</math>は視覚上位中枢に表現されている。このモデルは視覚下位中枢を折返しにして鏡像対称となっている。このとき、[[領野]]間の前向きと後ろ向きの結合ループを信号が循環する間に正しい解に到達することが示された。 | |||
図に示したモデルは、<math>S</math> | 図に示したモデルは、<math>S</math>をひとまとめにして記述したモデルである。実際には、<math>s_1</math>から<math>s_m</math>が、一次視覚野から高次視覚野で別々に表現されており、各階層間で上記の順逆変換のループが働いて各属性が推定されると考えられている。これらの計算過程やそれを支持する生理学や解剖学の知見については、文献<ref name=川人1990></ref><ref name=乾1993>'''乾 敏郎 (1993).'''<br>『Q&Aでわかる脳と視覚-人間からロボットまで』 サイエンス社.</ref>を参照。 | ||
なお、[[知覚]]の計算を行うときには前向きと後ろ向きの神経回路が用いられるが、後ろ向きの結合は、順光学なので仮に外部刺激による信号がないときに働けば、知覚時と同じ活動を再現することが可能である。つまりこのような順逆変換が学習されれば(彼らの理論では学習アルゴリズムも与えている)外界の情報の処理と[[内的イメージ]]の生成が同時に可能になるのである。具体的な視覚問題に適用された例は、文献<ref>'''Kawato, M., Hayakawa, H., & Inui, T. (1993).'''<br>A forward-inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4, 415-422. doi: 10.1088/0954-898X_4_4_001</ref> | なお、[[知覚]]の計算を行うときには前向きと後ろ向きの神経回路が用いられるが、後ろ向きの結合は、順光学なので仮に外部刺激による信号がないときに働けば、知覚時と同じ活動を再現することが可能である。つまりこのような順逆変換が学習されれば(彼らの理論では学習アルゴリズムも与えている)外界の情報の処理と[[内的イメージ]]の生成が同時に可能になるのである。具体的な視覚問題に適用された例は、文献<ref>'''Kawato, M., Hayakawa, H., & Inui, T. (1993).'''<br>A forward-inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4, 415-422. doi: 10.1088/0954-898X_4_4_001</ref>にある。なおこの理論は、[[w:Karl J. Friston|Friston]]の[[脳の統一理論]]である[[自由エネルギー原理]]において拡張された<ref><pubmed>17097864</pubmed></ref><ref>'''乾 敏郎・阪口 豊 (2020).'''<br>『脳の大統一理論 -自由エネルギー原理とは何か-』 岩波書店。</ref>。 | ||
== 参考文献 == | == 参考文献 == | ||
<references /> | <references /> |