16,039
回編集
細 (→符号化と復号化) |
細 (→チューニング関数と相関構造) |
||
80行目: | 80行目: | ||
[[ファイル:Shimazaki Neural Coding Fig2.png|サムネイル|'''図2. 2つの神経細胞の場合のシグナル相関とノイズ相関の関係'''<br>'''(A)''' チューニング関数が正のシグナル相関を持つ場合、正の2次相関により刺激の弁別が難しくなる。<br>'''(B)''' チューニング関数が負のシグナル相関を持つ場合、正の2次相関は刺激の弁別に影響しない。]] | [[ファイル:Shimazaki Neural Coding Fig2.png|サムネイル|'''図2. 2つの神経細胞の場合のシグナル相関とノイズ相関の関係'''<br>'''(A)''' チューニング関数が正のシグナル相関を持つ場合、正の2次相関により刺激の弁別が難しくなる。<br>'''(B)''' チューニング関数が負のシグナル相関を持つ場合、正の2次相関は刺激の弁別に影響しない。]] | ||
'''図2A、B''' | '''図2A、B'''の左のパネルは2つの神経細胞が類似したチューニング関数を持つ場合と性質の大きく異なるチューニング関数を持つ場合を示している。一方では、刺激が強くなると2つの神経細胞の発火頻度がともに大きくなる。他方では、2つのうち1つの神経細胞は刺激が強くなると発火頻度が小さくなる性質を持つ。2つの神経細胞の応答を各神経細胞の発火頻度を軸とする2次元の平面に描いたものが'''図2A、B'''の右パネルにある点線である。同様のチューニング関数の場合、2次元上の応答曲線は正の傾きを持つ。一方、反対のチューニング関数を持つ場合、応答曲線は負の傾きを持つ。このチューニング関数の相関をシグナル相関という。弱い刺激に対する応答の代表としてS1、強い刺激に対する応答としてS2の2点が描ける。 | ||
チューニング関数は各刺激の強さに対する神経細胞の平均発火頻度であり、実際には発火頻度は試行毎に異なる発火頻度が生成される。2つの神経細胞がある場合はこの生成は相関を伴うことがある。例えば、神経細胞の活動が正の相関を持つ場合には、一方の神経細胞が高い発火頻度を示した時にもう一方も高い発火頻度を示す。ある刺激が与えられたもとでの相関(共分散)をノイズ相関と呼ぶ。図2の右パネルの楕円は、刺激S1とS2が与えられた時に、神経活動が正の相関を持つ場合にサンプルが従う同時確率分布の等高線を描いており、その大きさはノイズの強さを表す。 | チューニング関数は各刺激の強さに対する神経細胞の平均発火頻度であり、実際には発火頻度は試行毎に異なる発火頻度が生成される。2つの神経細胞がある場合はこの生成は相関を伴うことがある。例えば、神経細胞の活動が正の相関を持つ場合には、一方の神経細胞が高い発火頻度を示した時にもう一方も高い発火頻度を示す。ある刺激が与えられたもとでの相関(共分散)をノイズ相関と呼ぶ。図2の右パネルの楕円は、刺激S1とS2が与えられた時に、神経活動が正の相関を持つ場合にサンプルが従う同時確率分布の等高線を描いており、その大きさはノイズの強さを表す。 | ||
相関を伴う同時活動からS1とS2を弁別しようとするとき、2つの分布がなるべく重ならない状態であることが望ましい。そのような状態は当然、発火頻度の分散が小さい場合に実現されるが、ここでは個々の発火頻度の変動のレベルは一定とする(楕円の面積は変わらないとする)。このような時、ノイズ相関がどのように分布の重なりに影響を与えるかはシグナル相関に依存する。例えば'''図2A'''にあるように、2つの神経細胞が正のシグナル相関を持つ場合、正のノイズ相関があると分布の重なりは大きくなり弁別が難しくなる。もし負のノイズ相関を示す場合、分布の重なりは小さくなり弁別が容易になる。一方'''図2B'''にあるように、2つの神経細胞が負のシグナル相関を持つ場合、正の相関があると分布の重なりは小さくなり弁別が容易になる。もし負のノイズ相関があると分布の重なりは大きくなり弁別が難しくなる。すなわち、シグナル相関と反対のノイズ相関を持っている方が弁別は容易になる。一般に集団活動による刺激の弁別/推定の精度は神経細胞間の相関だけで決められるわけではなく、弁別/推定の方法と個々の神経細胞のチューニング関数および相関構造の関係において決まってくる。そのため神経細胞集団の正の相関活動が必ずしも推定に悪影響を与えるわけではない。これらの関係はKenneth O. Johnsonによって初めて数学的に示された<ref name=Johnson1980><pubmed>7411183</pubmed></ref>[Johnson 1980]。 | |||
==冗長性を生む相関構造の探索== | ==冗長性を生む相関構造の探索== |