「神経符号化」の版間の差分

ナビゲーションに移動 検索に移動
37行目: 37行目:
 神経符号化研究では、神経活動から刺激や行動の意図等を推定する復号器を構築・適用することで神経細胞が保持する情報を明らかにすることが行われる。復号器の構築方法には2通りの方法がある。一つ目は復号器を神経細胞の活動から直接的に作る方法である。例として、神経活動の重み付け線形和によって刺激を推定する線形モデルが挙げられる。この方法の拡張として、刺激の分布として指数分布族を用い、その期待値を連結関数を通して神経細胞活動の線形和で表す一般化線形モデルがある。これらは確率モデル<math>p(y|x,w)</math>を直接構成する方法である。二つ目の方法は、符号化で用いたモデルを使用し、符号器のパラメータ推定として刺激を推定する方法である。例えば、符号器を用いた尤度関数を使って刺激の最尤推定を行うことは復号化にあたる。この方法は刺激に対して事前分布を仮定することで、ベイズの定理を用いた事後分布による刺激の推定に一般化される。
 神経符号化研究では、神経活動から刺激や行動の意図等を推定する復号器を構築・適用することで神経細胞が保持する情報を明らかにすることが行われる。復号器の構築方法には2通りの方法がある。一つ目は復号器を神経細胞の活動から直接的に作る方法である。例として、神経活動の重み付け線形和によって刺激を推定する線形モデルが挙げられる。この方法の拡張として、刺激の分布として指数分布族を用い、その期待値を連結関数を通して神経細胞活動の線形和で表す一般化線形モデルがある。これらは確率モデル<math>p(y|x,w)</math>を直接構成する方法である。二つ目の方法は、符号化で用いたモデルを使用し、符号器のパラメータ推定として刺激を推定する方法である。例えば、符号器を用いた尤度関数を使って刺激の最尤推定を行うことは復号化にあたる。この方法は刺激に対して事前分布を仮定することで、ベイズの定理を用いた事後分布による刺激の推定に一般化される。


<math>
:<math>
p(\mathbf{y}|\mathbf{x}, \mathbf{w})=\frac{p(\mathbf{x}|\mathbf{y}, \mathbf{w})p(\mathbf{y}|\mathbf{w})} {p(\mathbf{x}|\mathbf{w})}
p(\mathbf{y}|\mathbf{x}, \mathbf{w})=\frac{p(\mathbf{x}|\mathbf{y}, \mathbf{w})p(\mathbf{y}|\mathbf{w})} {p(\mathbf{x}|\mathbf{w})}
</math>
</math>
49行目: 49行目:
 最後に、符号器にも2通りの構築方法があることを紹介する。初めに紹介したように符号器<math>p(x|y,w)</math>として神経細胞が刺激に応答するモデルを直接構築する方法のほかに、符号器をベイズの定理を用いて表す方法がある。これを用いると符号器は復号器を用いて次のように表される。
 最後に、符号器にも2通りの構築方法があることを紹介する。初めに紹介したように符号器<math>p(x|y,w)</math>として神経細胞が刺激に応答するモデルを直接構築する方法のほかに、符号器をベイズの定理を用いて表す方法がある。これを用いると符号器は復号器を用いて次のように表される。


<math>
:<math>
p(\mathbf{x}|\mathbf{y},\mathbf{w})=\frac{p(\mathbf{y}|\mathbf{x},\mathbf{w})p(\mathbf{x}|\mathbf{w})} {p(\mathbf{y}|\mathbf{w})}
p(\mathbf{x}|\mathbf{y},\mathbf{w})=\frac{p(\mathbf{y}|\mathbf{x},\mathbf{w})p(\mathbf{x}|\mathbf{w})} {p(\mathbf{y}|\mathbf{w})}
</math>
</math>

案内メニュー