「ドリフト拡散モデル」の版間の差分

ナビゲーションに移動 検索に移動
128行目: 128行目:
 <math>a</math>と<math>d</math>は,推定するパラメータではなく,<math>v, b, A, s, \tau</math>が推定するパラメータになる。線形弾道蓄積モデルは,ドリフト拡散モデルよりも推定するパラメータが少なく,選択肢が3つ以上ある状況にも適用できるという利点がある。
 <math>a</math>と<math>d</math>は,推定するパラメータではなく,<math>v, b, A, s, \tau</math>が推定するパラメータになる。線形弾道蓄積モデルは,ドリフト拡散モデルよりも推定するパラメータが少なく,選択肢が3つ以上ある状況にも適用できるという利点がある。


==他のモデルとの統合==
==強化学習モデルとの統合==


 ドリフト拡散モデルは試行内の刺激呈示から反応出力 (選択) までのプロセスを表現するモデルであるが,試行間の選択傾向の変化を表す他の数理モデルと組み合わせることもできる。例えば,報酬に基づく学習のプロセスを表現する代表的なモデルである強化学習モデルと組み合わせた枠組みが提案されている<ref><pubmed>27966103</pubmed></ref><ref><pubmed>25589744</pubmed></ref>。
 ドリフト拡散モデルは試行内の刺激呈示から反応出力 (選択) までのプロセスを表現するモデルであるが,試行間の選択傾向の変化を表す他の数理モデルと組み合わせることもできる。例えば,報酬に基づく学習のプロセスを表現する代表的なモデルである強化学習モデルと組み合わせた枠組みが提案されている<ref><pubmed>27966103</pubmed></ref><ref><pubmed>25589744</pubmed></ref>。
135

回編集

案内メニュー