「ミカエリス・メンテンの式」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
93行目: 93行目:
<br>      <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>     (14)  
<br>      <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>     (14)  


<br>  とすれば、<math>1 / [S]</math>に対する<math>1 / v</math>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば図2に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットのx切片が<math>1/Km</math>,y切片が<math>1 / V_{max}</math>を与える。この方法はグラフ用紙さえあれば簡単にできるので以前はよく行われたが、低基質濃度のデータの誤差が大きく出るなどの欠点もあり、パソコンが普及した現在では、ミカエリス・メンテンプロットを適当なソフトウェアを用いて双曲線にフィッティングして、直接(7)式または(13)式の各パラメータを求めるdirect fitting法によることが多くなった。  
<br>  とすれば、<math>1 / [S]</math>に対する<math>1 / v</math>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば図2に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットの<math>x</math>切片が<math>1/Km</math>,<math>y</math>切片が<math>1 / V_{max}</math>を与える。この方法はグラフ用紙さえあれば簡単にできるので以前はよく行われたが、低基質濃度のデータの誤差が大きく出るなどの欠点もあり、パソコンが普及した現在では、ミカエリス・メンテンプロットを適当なソフトウェアを用いて双曲線にフィッティングして、直接(7)式または(13)式の各パラメータを求めるdirect fitting法によることが多くなった。  


[[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|'''図2. ラインウィーバー・バークプロット(二重逆数プロット)''']]  <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平<br>蛋白質・酵素の基礎実験法<br>''南江堂 (東京)'':1981</ref>。      
[[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|'''図2. ラインウィーバー・バークプロット(二重逆数プロット)''']]  <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平<br>蛋白質・酵素の基礎実験法<br>''南江堂 (東京)'':1981</ref>。      
153行目: 153行目:
<br>      <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>            (25)  
<br>      <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>            (25)  


従って<math>1 / [S]</math>に対して<math>1 / v</math>をプロット(ラインウィーバー・バークプロットまたは二重逆数プロット)すると図3のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、y軸上の一点(y切片 <math>= 1 / V_{max}</math>)で交わる直線群が得られる。
従って<math>1 / [S]</math>に対して<math>1 / v</math>をプロット(ラインウィーバー・バークプロットまたは二重逆数プロット)すると図3のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、y軸上の一点(<math>y</math>切片 <math>= 1 / V_{max}</math>)で交わる直線群が得られる。


[[Image:AtsuhikoIshida fig 3.jpg|thumb|300px|'''図3.競合阻害剤存在下でのラインウィーバー・バークプロット'''<br>各直線はy軸上の一点で交わる。]]これらの直線の傾きは  
[[Image:AtsuhikoIshida fig 3.jpg|thumb|300px|'''図3.競合阻害剤存在下でのラインウィーバー・バークプロット'''<br>各直線はy軸上の一点で交わる。]]これらの直線の傾きは  
159行目: 159行目:
<br>      <math>\frac{K_m(1+\frac{[I]}{K_i})}{V_{max}} = \frac{K_m}{V_{max}}\frac{1}{K_i}[I] + \frac{K_m}{V_{max}}</math>            (26)  
<br>      <math>\frac{K_m(1+\frac{[I]}{K_i})}{V_{max}} = \frac{K_m}{V_{max}}\frac{1}{K_i}[I] + \frac{K_m}{V_{max}}</math>            (26)  


と表せるので、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図3のラインウィーバー・バークプロットの傾きをプロットした図4のような2次プロットを作成すると、(26)式に従った直線となり、その直線のx切片(<math>-K_i</math>に相当)の値から<math>K_i</math>値を求めることが出来る。<math>K_i</math>は阻害定数と呼ばれ、この場合、酵素—阻害剤複合体の解離定数に相当する。<math>K_i</math>は酵素と阻害剤の親和性の尺度であり、値が小さいほど酵素に対する親和性が強いことを示す。
と表せるので、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図3のラインウィーバー・バークプロットの傾きをプロットした図4のような2次プロットを作成すると、(26)式に従った直線となり、その直線の<math>x</math>切片(<math>-K_i</math>に相当)の値から<math>K_i</math>値を求めることが出来る。<math>K_i</math>は阻害定数と呼ばれ、この場合、酵素—阻害剤複合体の解離定数に相当する。<math>K_i</math>は酵素と阻害剤の親和性の尺度であり、値が小さいほど酵素に対する親和性が強いことを示す。


[[Image:AtsuhikoIshida fig 4.jpg|thumb|300px|'''図4.Ki値を求めるための二次プロット'''<br>各阻害剤濃度に対して図3のプロットの傾きをプロットしたもの。]]  
[[Image:AtsuhikoIshida fig 4.jpg|thumb|300px|'''図4.Ki値を求めるための二次プロット'''<br>各阻害剤濃度に対して図3のプロットの傾きをプロットしたもの。]]  
189行目: 189行目:
<br>       <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1+\frac{[I]}{K_i}}{V_{max}}</math>       (33)  
<br>       <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1+\frac{[I]}{K_i}}{V_{max}}</math>       (33)  


従って<math>1 / [S]</math>に対して<math>1 / v</math>をプロットすると図5のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、x軸上の一点(x切片<math>= − 1 / K_m</math>)で交わる直線群が得られる。これらの直線の傾きは (26)式で表せるので、競合阻害の場合と同様、各阻害剤濃度<math>[I]</math>に対して、図5のラインウィーバー・バークプロットの傾きをプロットした2次プロットは図4のようになり、その直線のx切片の値から<math>K_i</math>値を求めることが出来る。この場合も阻害定数<math>K_i</math>は値が小さいほど酵素に対する親和性が強いことを示す。 [[Image:Atsuhikoishida fig 5.jpg|thumb|300px|'''図5.非競合阻害剤存在下のラインウィーバー・バークプロット'''<br>各直線はx軸上の一点で交わる。]]  
従って<math>1 / [S]</math>に対して<math>1 / v</math>をプロットすると図5のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、x軸上の一点(<math>x</math>切片<math>= − 1 / K_m</math>)で交わる直線群が得られる。これらの直線の傾きは (26)式で表せるので、競合阻害の場合と同様、各阻害剤濃度<math>[I]</math>に対して、図5のラインウィーバー・バークプロットの傾きをプロットした2次プロットは図4のようになり、その直線の<math>x</math>切片の値から<math>K_i</math>値を求めることが出来る。この場合も阻害定数<math>K_i</math>は値が小さいほど酵素に対する親和性が強いことを示す。 [[Image:Atsuhikoishida fig 5.jpg|thumb|300px|'''図5.非競合阻害剤存在下のラインウィーバー・バークプロット'''<br>各直線はx軸上の一点で交わる。]]  


 以上のように、阻害剤濃度や基質濃度を様々に変えて酵素活性を測定し、図3や図5のようなラインウィーバー・バークプロットのパターンを調べることにより、その阻害剤と酵素の親和性や阻害剤の結合部位に関する情報を簡便に得ることが出来る。  
 以上のように、阻害剤濃度や基質濃度を様々に変えて酵素活性を測定し、図3や図5のようなラインウィーバー・バークプロットのパターンを調べることにより、その阻害剤と酵素の親和性や阻害剤の結合部位に関する情報を簡便に得ることが出来る。  

案内メニュー