「ドリフト拡散モデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
70行目: 70行目:
:<math>G(t, v, a, z) = \frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin \left(\frac{\pi z k}{a}\right) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math>
:<math>G(t, v, a, z) = \frac{\pi \sigma^2}{a^2} e^{-zv/\sigma^2} \sum_{k=1}^\infty k \sin \left(\frac{\pi z k}{a}\right) e^{-\frac{1}{2} (v^2 / \sigma^2 + \pi^2 k^2 \sigma^2/a^2)t} </math>


で与えられる。境界<math>a</math>に到達し反応Aが起こり、かつその反応時間が<math>t</math>となる確率密度は、上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math>で置き換えることで得られる。'''図2'''の上下の曲線はこれらの式により得られた条件付きの確率密度関数である。シミュレーションにより得た反応時間のヒストグラムもサンプルが増えるにつれてこの分布に近づいていくことがわかる。
で与えられる。境界<math>a</math>に到達し反応Aが起こり、かつその反応時間が<math>t</math>となる確率密度は、上の式において<math>v</math>を<math>-v</math>で, <math>z</math> を<math>a -z</math>で置き換えることで得られる。'''図2'''の上下の曲線はこれらの式により得られた条件付きの確率密度関数である。シミュレーションにより得た反応時間のヒストグラムも試行数が増えるにつれてこの分布に近づいていくことがわかる。


==モデルフィッティング==
==モデルフィッティング==

案内メニュー