「ミカエリス・メンテンの式」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
35行目: 35行目:
<br>      <math>v = k_3[ES]\,</math>     (3)  
<br>      <math>v = k_3[ES]\,</math>     (3)  


<br>  ここで酵素の全濃度<math>[E_{sub}]</math>は  
<br>  ここで酵素の全濃度<math>[E]_0[</math>は  


<br>      <math>[E]_0 = [E] + [ES]\,</math>     (4)  
<br>      <math>[E]_0 = [E] + [ES]\,</math>     (4)  
73行目: 73行目:
<br>  (10)(11)より  
<br>  (10)(11)より  


<br>      <math>v = \frac{k_1k_3[E_0][S]}{k_1[S]+(k_2 + k_3)} = \frac{k_3[E_0][S]}{[S]+\frac{k_2 + k_3}{k_1}}</math>     (12)  
<br>      <math>v = \frac{k_1k_3[E]_0[[S]}{k_1[S]+(k_2 + k_3)} = \frac{k_3[E]_0[[S]}{[S]+\frac{k_2 + k_3}{k_1}}</math>     (12)  


<br>  ここで <math>(k_2+k_3) / k_1 = K_m</math>、<math>k_3[E]_0 = V_{max}</math>とおくと  
<br>  ここで <math>(k_2+k_3) / k_1 = K_m</math>、<math>k_3[E]_0 = V_{max}</math>とおくと  
93行目: 93行目:
<br>      <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>     (14)  
<br>      <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>     (14)  


<br>  とすれば、<math>1 / [S]</math>に対する<math>1 / v</math>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば'''図2'''に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットの<math>x</math>切片が<math>1/Km</math>、<math>y</math>切片が<math>1 / V_{max}</math>を与える。この方法はグラフ用紙さえあれば簡単にできるので以前はよく行われたが、低基質濃度のデータの誤差が大きく出るなどの欠点もあり、パソコンが普及した現在では、ミカエリス・メンテンプロットを適当なソフトウェアを用いて双曲線にフィッティングして、直接(7)式または(13)式の各パラメータを求めるdirect fitting法によることが多くなった。  
<br>  とすれば、<math>1 / [S]</math>に対する<math>1 / v</math>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば'''図2'''に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットの<math>x</math>切片が<math>-1/Km</math>、<math>y</math>切片が<math>1 / V_{max}</math>を与える。この方法はグラフ用紙さえあれば簡単にできるので以前はよく行われたが、低基質濃度のデータの誤差が大きく出るなどの欠点もあり、パソコンが普及した現在では、ミカエリス・メンテンプロットを適当なソフトウェアを用いて双曲線にフィッティングして、直接(7)式または(13)式の各パラメータを求めるdirect fitting法によることが多くなった。  


[[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|''''''図2'''. ラインウィーバー・バークプロット(二重逆数プロット)''']]  <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平 (1981).'''<br>蛋白質・酵素の基礎実験法, ''南江堂 (東京)''</ref>。    
[[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|''''''図2'''. ラインウィーバー・バークプロット(二重逆数プロット)''']]  <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平 (1981).'''<br>蛋白質・酵素の基礎実験法, ''南江堂 (東京)''</ref>。    
99行目: 99行目:
== 速度論的パラメータの意味  ==
== 速度論的パラメータの意味  ==


 前にも述べたように、<math>K_m</math>は<math>V_{max}</math>の1/2の速度を与える時の基質濃度として定義され、酵素と基質の親和性の尺度となる。また、<math>V_{max}</math>は基質濃度無限大、つまり酵素分子全てが基質で飽和された時の反応速度である。定義により、<math>V_{max}=k_3[E_0]</math>であるが、この<math>k_3</math>を[[触媒定数]]、或いはターンオーバー・ナンバーと呼び、通常<math>k_{cat}</math>で表す。すなわち  
 前にも述べたように、<math>K_m</math>は<math>V_{max}</math>の1/2の速度を与える時の基質濃度として定義され、酵素と基質の親和性の尺度となる。また、<math>V_{max}</math>は基質濃度無限大、つまり酵素分子全てが基質で飽和された時の反応速度である。定義により、<math>V_{max}=k_3[E]_0[</math>であるが、この<math>k_3</math>を[[触媒定数]]、或いはターンオーバー・ナンバーと呼び、通常<math>k_{cat}</math>で表す。すなわち  


<br>      <math>k_{cat} = \frac{V_{max}}{[E_0]}</math>     (15)  
<br>      <math>k_{cat} = \frac{V_{max}}{[E]_0}</math>     (15)  


<br>  である(<math>[E_{sub}]</math>は全酵素濃度)。<math>k_{cat}</math>は酵素が基質で飽和された状態において、1モルの酵素(或いは活性部位)が1秒間に生成物へ変換できる基質のモル数を表し、単位は<math>s^{-1}</math>である。すなわち<math>k_{cat}</math>は酵素の触媒効率を表す指標である。また、(7)または(13)式の<math>V_{max}</math>を(15)式により、<math>k_{cat}[E_0]</math>で置き換えると  
<br>  である(<math>[E]_0[</math>は全酵素濃度)。<math>k_{cat}</math>は酵素が基質で飽和された状態において、1モルの酵素(或いは活性部位)が1秒間に生成物へ変換できる基質のモル数を表し、単位は<math>s^{-1}</math>である。すなわち<math>k_{cat}</math>は酵素の触媒効率を表す指標である。また、(7)または(13)式の<math>V_{max}</math>を(15)式により、<math>k_{cat}[E]_0[</math>で置き換えると  


<br>      <math>v = k_3[ES] = \frac{k_{cat}[E_0][S]}{K_m +[S]}</math>          (16)  
<br>      <math>v = k_3[ES] = \frac{k_{cat}[E]_0[[S]}{K_m +[S]}</math>          (16)  


<br>  ここで基質濃度が非常に希薄な<math>[S] << K_m</math>の濃度領域を考えると  
<br>  ここで基質濃度が非常に希薄な<math>[S] << K_m</math>の濃度領域を考えると  


<br>      <math>v = \frac{k_{cat}[E_0][S]}{K_m +[S]} \approx \frac{k_{cat}[E_0][S]}{K_m} = \frac{k_{cat}}{K_m}[E_0][S]</math>       (17)  
<br>      <math>v = \frac{k_{cat}[E]_0[[S]}{K_m +[S]} \approx \frac{k_{cat}[E]_0[S]}{K_m} = \frac{k_{cat}}{K_m}[E]_0[S]</math>       (17)  


<br>  基質が非常に薄い条件下では、基質は殆ど酵素に結合していないと考えられるから<math>[E_{sub}]\approx[E]</math>  
<br>  基質が非常に薄い条件下では、基質は殆ど酵素に結合していないと考えられるから<math>[E_0]\approx[E]</math>  
従って  
従って  


<br>      <math>v =  \frac{k_{cat}}{K_m}[E][S]</math>          (18)  
<br>      <math>v =  \frac{k_{cat}}{K_m}[E][S]</math>          (18)  


<br>  この式は<math>E</math>と<math>S</math>の衝突が反応全体の速度を支配していると考えた場合の二次反応速度定数が<math>k_{cat}/k_m</math>であることを示している。<math>k_{cat}/k_m</math>の値は、異なる酵素の触媒効率を比較する際のパラメータとして用いられる。また、同一の酵素に対して、異なる基質の特異性を議論する場合にも<math>k_{cat}/k_m</math>の値が用いられ、特異性定数と呼ばれることがある。この場合、<math>k_{cat}/k_m</math>の値が大きいほど、その酵素に対してよい基質であるということになる。
<br>  この式は<math>E</math>と<math>S</math>の衝突が反応全体の速度を支配していると考えた場合の二次反応速度定数が<math>k_{cat}/K_m</math>であることを示している。<math>k_{cat}/K_m</math>の値は、異なる酵素の触媒効率を比較する際のパラメータとして用いられる。また、同一の酵素に対して、異なる基質の特異性を議論する場合にも<math>k_{cat}/K_m</math>の値が用いられ、特異性定数と呼ばれることがある。この場合、<math>k_{cat}/K_m</math>の値が大きいほど、その酵素に対してよい基質であるということになる。


== 阻害剤存在下の酵素反応速度論  ==
== 阻害剤存在下の酵素反応速度論  ==
133行目: 133行目:
<br>      <math>K_i = \frac{[E][I]}{[EI]}</math>      (20)  
<br>      <math>K_i = \frac{[E][I]}{[EI]}</math>      (20)  


この場合、酵素の全濃度<math>[E_{sub}]</math>は(4)式に代わって  
この場合、酵素の全濃度<math>[E]_0</math>は(4)式に代わって  


<br>      <math>[E_0] = [E] + [ES] + [EI]\,</math>     (21)   
<br>      <math>[E]_0 = [E] + [ES] + [EI]\,</math>     (21)   


(2)(20)(21)より<math>[E]</math>と<math>[EI]</math>を消去して<math>[ES]</math>について整理すると  
(2)(20)(21)より<math>[E]</math>と<math>[EI]</math>を消去して<math>[ES]</math>について整理すると  


<br>      <math>[ES] = \frac{[E_0][S]}{[S]+K_d(1+\frac{[I]}{K_i})}</math>       (22)  
<br>      <math>[ES] = \frac{[E]_0[S]}{[S]+K_d(1+\frac{[I]}{K_i})}</math>       (22)  


これを(3)に代入すれば  
これを(3)に代入すれば  


<br>      <math>v = \frac{k_3[E_0][S]}{[S]+K_d(1+\frac{[I]}{K_i})}</math>       (23)  
<br>      <math>v = \frac{k_3[E]_0[S]}{[S]+K_d(1+\frac{[I]}{K_i})}</math>       (23)  


ここで <math>k_3[E_0] = V_{max}</math>、<math>K_d=K_m</math>であるから  
ここで <math>k_3[E]_0 = V_{max}</math>、<math>K_d=K_m</math>であるから  


<br>      <math>v = \frac{V_{max}[S]}{[S]+K_m(1+\frac{[I]}{K_i})}</math>       (24)  
<br>      <math>v = \frac{V_{max}[S]}{[S]+K_m(1+\frac{[I]}{K_i})}</math>       (24)  
172行目: 172行目:
<br>       <math>EI + S {\rightleftarrows} ESI</math>       (28)  
<br>       <math>EI + S {\rightleftarrows} ESI</math>       (28)  


という結合解離平衡の存在を仮定することになるが、(27)(28)の解離平衡定数は、互いの結合に影響を及ぼさないという定義により、それぞれ<math>K_i</math>, <math>k_d</math>と等しくなる。すなわち、  
という結合解離平衡の存在を仮定することになるが、(27)(28)の解離平衡定数は、互いの結合に影響を及ぼさないという定義により、それぞれ<math>K_i</math>, <math>K_d</math>と等しくなる。すなわち、  


<br>       <math>K_i = \frac{[E][I]}{[EI]} =  \frac{[ES][I]}{[ESI]}</math>   (29)       
<br>       <math>K_i = \frac{[E][I]}{[EI]} =  \frac{[ES][I]}{[ESI]}</math>   (29)       
<br>       <math>K_d = \frac{[E][S]}{[ES]} =  \frac{[EI][S]}{[ESI]}</math>       (30)  
<br>       <math>K_d = \frac{[E][S]}{[ES]} =  \frac{[EI][S]}{[ESI]}</math>       (30)  


また酵素の全濃度<math>[E_{sub}]</math>は  
また酵素の全濃度<math>[E]_0</math>は  


<br>       <math>[E_0] = [E] + [ES] + [EI] + [ESI]</math>     (31)
<br>       <math>[E]_0 = [E] + [ES] + [EI] + [ESI]</math>     (31)


となる。上記と同様に(29)(30)(31)より<math>[E]</math>、<math>[EI]</math>、<math>[ESI]</math>を消去し、得られた<math>[ES]</math>を(3)に代入して、<math>k_3[E_0] = V_max</math>、<math>Kd=K_m</math>とおくと、
となる。上記と同様に(29)(30)(31)より<math>[E]</math>、<math>[EI]</math>、<math>[ESI]</math>を消去し、得られた<math>[ES]</math>を(3)に代入して、<math>k_3[E]_0 = V_{max}</math>、<math>K_d=K_m</math>とおくと、


<br>       <math>v = \frac{1}{1+\frac{[I]}{K_i}}\frac{V_{max}[S]}{K_m +[S]}</math>       (32)  
<br>       <math>v = \frac{1}{1+\frac{[I]}{K_i}}\frac{V_{max}[S]}{K_m +[S]}</math>       (32)  
33

回編集

案内メニュー