「視覚前野」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://researchmap.jp/takanami/?lang=japanese 伊藤南]</font><br>
<font size="+1">[http://researchmap.jp/takanami/?lang=japanese 伊藤南]</font><br>
''東京医科歯科大学生体機能支援システム学分野''<br>
''東京医科歯科大学生体機能システム学分野''<br>
DOI:<selfdoi /> 原稿受付日:2013年5月24日 原稿完成日:2015年月日<br>
DOI:<selfdoi /> 原稿受付日:2013年5月24日 原稿完成日:2021年9月22日<br>
担当編集委員:[http://researchmap.jp/ichirofujita/?lang=japanese 藤田一郎](大阪大学 大学院生命機能研究科)<br>
担当編集委員:[http://researchmap.jp/keijitanaka 田中 啓治](国立研究開発法人理化学研究所 脳神経科学研究センター)<br>
</div>
</div>


10行目: 10行目:
同義語:外線条皮質、有線外皮質、後頭連合野
同義語:外線条皮質、有線外皮質、後頭連合野


{{box
{{box|text= 視覚前野は哺乳類の大脳新皮質の一部で、後頭葉の視覚連合野(後頭連合野)、ブロードマンの脳地図の18野、19野に相当する。V2、V3、V3A、V4、V5/MT、V6等の機能的領野に区分される。第一次視覚野(V1、17野)より主な入力を受けて視覚情報処理を行う。各領野のニューロンは受容野を持ち、レチノトピー(網膜部位再現)の性質を示して、片半球の領野が反対側の半視野を表す。これらの領野は階層的な結合関係を持ち、上の階層の領野ほど受容野が大きく、より複雑な刺激特徴の情報を抽出表現する。主に2つの視覚経路に分かれており、腹側視覚路はV2、V4を介して側頭葉(側頭連合野)に出力し、物体の形状や物体表面の性質(明るさ、色、模様)を表し、視覚対象の認識や形状の表象に寄与する。背側視覚路はV2、V3、V5/MT、V6を介して後頭頂葉(頭頂連合野)に出力し、3次元的な空間配置、空間の構造、動きを表して、眼や腕の運動制御に寄与する。}}
|text=  視覚前野(しかくぜんや)は哺乳類の大脳新皮質の一部で、後頭葉の視覚連合野(後頭連合野)、ブロードマンの脳地図の18野、19野に相当する。V2、V3、V3A、V4、V5/MT、V6等の機能的領野に区分される。第一次視覚野(V1、17野)より主な入力を受けて視覚情報処理を行う。各領野のニューロンは受容野を持ち、レチノトピー(網膜部位再現)の性質を示して、片半球の領野が反対側の半視野を表す。これらの領野は階層的な結合関係を持ち、上の階層の領野ほど受容野が大きく、より複雑な刺激特徴の情報を抽出表現する。主に2つの視覚経路に分かれており、腹側視覚路はV2、V4を介して側頭葉(側頭連合野)に出力し、物体の形状や物体表面の性質(明るさ、色、模様)を表し、視覚対象の認識や形状の表象に寄与する。背側視覚路はV2、V3、V5/MT、V6を介して後頭頂葉(頭頂連合野)に出力し、3次元的な空間配置、空間の構造、動きを表して、眼や腕の運動制御に寄与する。}}


==視覚前野とは==
==視覚前野とは==


 [[wikipedia:ja:哺乳類|哺乳類]]の[[wikipedia:ja:大脳新皮質|大脳新皮質]]の一部で、後頭葉の視覚連合野(後頭連合野)、あるいは後頭葉から[[第一次視覚野]](V1)を除いた部分。細胞構築学的には[[ブロードマンの脳地図]]の18野、19野に相当する。18野を前有線皮質(傍有線野、prestriate cortex)、19野を周有線皮質(周線条野、後頭眼野、parastriate cortex)、視覚前野全体を外線条皮質(有線外皮質、extrastriate cortex、circumstriate cortex)と呼ぶ。当初、第一次視覚野(V1)に隣接する領域を広く視覚前野ないし視覚連合野と称した。1960年代以降、単一細胞記録やトレーサーの注入による研究が進み、ニューロンの応答特性、受容野の大きさや位置、解剖学的投射などを手がかりとした機能的領野区分の研究がネコやサルで盛んになった。また[[wikipedia:ja:免疫組織化学|免疫組織化学]]による研究が進み、タンパクや遺伝子の発現に着目した研究も進んだ。1980年代以降、fMRIや光計測等のイメージング技術の発達により視野地図の広がりを可視化する研究が盛んになり、ヒトを対象とする研究も進んだ。機能的な領野区分は[[wikipedia:ja:旧世界ザル|旧世界ザル]]のマカカ属サル([[wikipedia:ja:アカゲザル|アカゲザル]]、[[wikipedia:ja:ニホンザル|ニホンザル]]など)で最も進んでおり、V2、V3、V4、V5/MT、V6等の機能的な領野が同定され、それぞれが個別の領野として扱われることが多い。細部や高次領域(V3、V4、V6)については、ヒトを含む動物種により区分法や名称が異なり、研究者間でも見解の相違がある。本稿では旧世界ザルの知見を中心に概説する。
 [[wj:哺乳類|哺乳類]]の[[大脳新皮質]]の一部で、[[後頭葉]]の[[視覚連合野]]([[後頭連合野]])、あるいは後頭葉から[[第一次視覚野]](V1)を除いた部分。細胞構築学的には[[ブロードマンの脳地図]]の[[18野]]、[[19野]]に相当する。18野を[[前有線皮質]]([[傍有線野]]、[[prestriate cortex]])、[[19野]]を[[周有線皮質]]([[周線条野]]、[[後頭眼野]]、[[parastriate cortex]])、視覚前野全体を[[外線条皮質]]([[有線外皮質]]、[[extrastriate cortex]]、[[circumstriate cortex]])と呼ぶ。当初、第一次視覚野(V1)に隣接する領域を広く視覚前野ないし視覚連合野と称した。1960年代以降、[[単一細胞記録]]や[[トレーサー]]の注入による研究が進み、[[ニューロン]]の応答特性、[[受容野]]の大きさや位置、解剖学的投射などを手がかりとした機能的領野区分の研究が[[ネコ]]や[[サル]]で盛んになった。また[[免疫組織化学]]による研究が進み、タンパク質や遺伝子の発現に着目した研究も進んだ。1980年代以降、[[fMRI]]や[[光計測]]等のイメージング技術の発達により[[視野地図]]の広がりを可視化する研究が盛んになり、[[ヒト]]を対象とする研究も進んだ。機能的な領野区分は[[wj:旧世界ザル|旧世界ザル]]の[[マカカ属]]サル([[アカゲザル]]、[[ニホンザル]]など)で最も進んでおり、[[V2]]、[[V3]]、[[V4]]、[[V5]]/[[MT]]、[[V6]]等の機能的な領野が同定され、それぞれが個別の領野として扱われることが多い。細部や高次領域(V3、V4、V6)については、ヒトを含む動物種により区分法や名称が異なり、研究者間でも見解の相違がある。本稿では旧世界ザルの知見を中心に概説する。


==機能的な領野の区分==
==機能的な領野の区分==
[[Image:視覚前野図4-1c.jpg|400px|thumb|350px|'''図1. マカカ属サルの大脳皮質(右半球)'''<br>外側面(下図)の上側が頭頂葉(背側)、下側が側頭葉(腹側)を示す。右側が前頭葉(前側)、左側が後頭葉(後側)、橙色の部分が視覚前野、肌色がその他の視覚野を示す。内側面(上図)は上下を逆に示す。]]
[[Image:視覚前野図4-2c.jpg|400px|thumb|350px|'''図2. マカカ属サルの大脳皮質の展開図(右半球)'''<br>大脳皮質の表面をのばして表示したもので、内側で切って上下に開いたように表示してある。右側が前頭葉(前側)、左側が後頭葉(後側)、橙色の部分が視覚前野、肌色がその他の視覚野を示す。(Felleman and Van Essen (1991)<ref name=ref4><pubmed>1822724</pubmed></ref> Fig.2を改変)]]
 視覚前野のニューロンは、V1と同様に、(古典的)受容野内に呈示された視覚刺激が持つ刺激特性を抽出する。視覚刺激の位置情報は受容野の位置で表される。視覚前野の各領野は[[レチノトピー]]([[網膜]]部位の再現)の性質を示し(詳細は[[受容野]]を参照)、片半球の1つの領野が反対側の[[視野]]を映す一枚のトポグラフィックな視野地図を表す。受容野の位置が[[中心視野]]([[fovea]])から周辺視野に移るにつれて、受容野の大きさは大きくなる。領野内で中心視野を表す部分の面積は大きく、周辺視野に移るにつれて占有面積の割合が減少する(V6は除く)。マカカ属サルのV2、V3、V4はそれぞれV1の前方に帯状に広がり、大脳皮質の腹側の領域が反対側の視野の上半分(上視野)を表し、背側の領域が視野の下半分(下視野)を表し、その間の領域が中心視野を表す。領野の境界は視野の垂直子午線(vertical meridian)ないし水平子午線(horizontal meridian)を表す。垂直子午線付近のニューロンは[[脳梁]]を介して反対側の半球から入力を受け、両側の視野にまたがる受容野を持つ。V1、V2、V3、V4の中心視野領域は[[月状溝]]([[lunate sulcus]])の終端部付近に収束している。この付近では受容野が小さくその差違が明瞭でないので、領野の境界を正確に定めることが難しい。V3、V4の区分には諸説がある(後述。V3,V4の項を参照)。V5/MTは[[上側頭溝]]([[superior temporal sulcus]]、[[STS]])内部に、V6は[[頭頂後頭溝]]([[parieto-occipital sulcus]], PO)内部にあり、上視野と下視野が連続した一枚の視野地図を持つ。


[[Image:視覚前野図4-1c.jpg|400px|thumb|350px|'''図1.マカカ属サルの大脳皮質(右半球)'''<br>外側面(下図)の上側が頭頂葉(背側)、下側が側頭葉(腹側)を示す。右側が前頭葉(前側)、左側が後頭葉(後側)、橙色の部分が視覚前野、肌色がその他の視覚野を示す。内側面(上図)は上下を逆に示す。]]
 非侵襲的な計測法(fMRI)の開発により、視野地図のイメージングによるヒトの領野区分が進んだ。V1、V2、V5/MTのようなマカカ属サルと相同な領野(ホモログ)が同定されているが、V3、V4、V6等の高次領域については諸説ある(後述。V3、V4、V6の項を参照)。ヒトの高次領域では個体差が大きい。[[ネコ]][[フェレット]]ではV1、V2、V3をそのまま17野、18野、19野と呼ぶことが一般的である<ref><pubmed>8439738</pubmed></ref><ref><pubmed>11884357</pubmed></ref>。ネコやフェレットの高次領域の区分は確立されていない。サルの視覚前野がV1から主な入力を受けるのに対して、ネコやフェレットでは、[[外側膝状体]]から17野、18野、19野に並行な投射が存在する<ref><pubmed>231475</pubmed></ref>。[[マウス]]や[[ラット]]の[[大脳皮質]]にもV1より高次の視覚領域が複数存在することが知られているが、個別の領野として確立されるには至っていない<ref><pubmed>1184785</pubmed></ref><ref><pubmed>661689</pubmed></ref><ref><pubmed>6776164</pubmed></ref><ref><pubmed>2358036</pubmed></ref><ref><pubmed>7690066</pubmed></ref><ref><pubmed>8335065</pubmed></ref><ref><pubmed>17366604</pubmed></ref>。
 
[[Image:視覚前野図4-2c.jpg|400px|thumb|350px|'''図2.マカカ属サルの大脳皮質の展開図(右半球)'''<br>大脳皮質の表面をのばして表示したもので、内側で切って上下に開いたように表示してある。右側が前頭葉(前側)、左側が後頭葉(後側)、橙色の部分が視覚前野、肌色がその他の視覚野を示す。(Felleman and Van Essen (1991)<ref name=ref4><pubmed>1822724</pubmed></ref> Fig.2を改変)]]
 
 視覚前野のニューロンは、V1と同様に、(古典的)受容野内に呈示された視覚刺激が持つ刺激特性を抽出する。視覚刺激の位置情報は受容野の位置で表される。視覚前野の各領野は[[wikipedia:ja:レチノトピー|レチノトピー]](網膜部位の再現)の性質を示し(詳細は[[受容野]]を参照)、片半球の1つの領野が反対側の[[wikipedia:ja:視野|視野]]を映す一枚のトポグラフィックな視野地図を表す。受容野の位置が中心視野(fovea)から周辺視野に移るにつれて、受容野の大きさは大きくなる。領野内で中心視野を表す部分の面積は大きく、周辺視野に移るにつれて占有面積の割合が減少する(V6は除く)。マカカ属サルのV2、V3、V4はそれぞれV1の前方に帯状に広がり、大脳皮質の腹側の領域が反対側の視野の上半分(上視野)を表し、背側の領域が視野の下半分(下視野)を表し、その間の領域が中心視野を表す。領野の境界は視野の垂直子午線(vertical meridian)ないし水平子午線(horizontal meridian)を表す。垂直子午線付近のニューロンは脳梁を介して反対側の半球から入力を受け、両側の視野にまたがる受容野を持つ。V1、V2、V3、V4の中心視野領域は月状溝(lunate sulcus)の終端部付近に収束している。この付近では受容野が小さくその差違が明瞭でないので、領野の境界を正確に定めることが難しい。V3、V4の区分には諸説がある(後述。V3,V4の項を参照)。V5/MTは上側頭溝(superior temporal sulcus、STS)内部に、V6は頭頂後頭溝(parieto-occipital sulcus, PO)内部にあり、上視野と下視野が連続した一枚の視野地図を持つ。非侵襲的な計測法(fMRI)の開発により、視野地図のイメージングによるヒトの領野区分が進んだ。V1、V2、V5/MTのようなマカカ属サルと相同な領野(ホモログ)が同定されているが、V3、V4、V6等の高次領域については諸説ある(後述。V3、V4、V6の項を参照)。ヒトの高次領域では個体差が大きい。ネコやフェレットではV1、V2、V3をそのまま17野、18野、19野と呼ぶことが一般的である<ref><pubmed>8439738</pubmed></ref><ref><pubmed>11884357</pubmed></ref>。ネコやフェレットの高次領域の区分は確立されていない。サルの視覚前野がV1から主な入力を受けるのに対して、ネコやフェレットでは、[[wikipedia:ja:外側膝状体|外側膝状体]]から17野、18野、19野に並行な投射が存在する<ref><pubmed>231475</pubmed></ref>。マウスやラットの大脳皮質にもV1より高次の視覚領域が複数存在することが知られているが、個別の領野として確立されるには至っていない<ref><pubmed>1184785</pubmed></ref><ref><pubmed>661689</pubmed></ref><ref><pubmed>6776164</pubmed></ref><ref><pubmed>2358036</pubmed></ref><ref><pubmed>7690066</pubmed></ref><ref><pubmed>8335065</pubmed></ref><ref><pubmed>17366604</pubmed></ref>。


==階層的なネットワークと視覚情報の中間処理==
==階層的なネットワークと視覚情報の中間処理==


 視覚前野の機能的な領野は階層的な結合関係を持ち、V1と高次視覚野(側頭葉、後頭頂葉)の間で、視覚情報の中間処理を行う。領野間のフィードフォワード投射に着目すると視覚情報の流れを階層的なネットワークの枠組みで捉えることができる。V1ニューロンは、その受容野内に呈示される局所的な刺激特徴(色(輝度)、線の傾き、両眼視差による奥行、運動方向)とその位置の情報(受容野の位置)を視覚前野に伝える。視覚前野の階層を上がるにつれて受容野のサイズが大きくなり、より広範囲の視野に含まれる刺激要素や刺激特徴の情報を取捨選択して統合する。より複雑な刺激特徴を抽出するとともに、視野情報から知覚情報への変換課程の一端を担う。ただし、領野間の情報表現の変化には重複も大きく、階層を上がる度に領野の性質が変化するというよりは、複雑な刺激特徴に選択的に反応するニューロンの割合が徐々に増えていくという見方の方が正確である。一方、刺激要素の位置情報やレチノトピーの性質は徐々に失われる。またV2やV4ではCOストライプやグロブ(後述。V2、V4の項を参照)ごとに局所的な視野地図の繰り返しが生じている。視覚情報の流れは主に背側視覚路と腹側視覚路とに分かれる<ref>'''L G Ungerleider, M Mishkin'''<br>Two cortical visual systems.<br>''Analysis of Visual Behavior'' (D J Ingle, M A Goodale, R J W Masfield, eds.), MIT Press, Cambridge, MA, 1982.</ref><ref><pubmed>2471327</pubmed></ref><ref><pubmed>1965642</pubmed></ref><ref><pubmed>1702462</pubmed></ref><ref><pubmed>1734518</pubmed></ref><ref><pubmed>8038571</pubmed></ref>(詳細は[[視覚経路]]、[[受容野]]を参照)。同一視野の情報が複数の領野で分散並列処理されており、外側膝状体やV1と異なり、視覚前野のある領野が局所的に損傷されても視野に欠損(暗点)は生じない。
 視覚前野の機能的な領野は階層的な結合関係を持ち、V1と[[高次視覚野]]([[側頭葉]]、[[後頭頂葉]])の間で、視覚情報の中間処理を行う。領野間のフィードフォワード投射に着目すると視覚情報の流れを階層的なネットワークの枠組みで捉えることができる。V1ニューロンは、その受容野内に呈示される局所的な刺激特徴(色(輝度)、線の傾き、[[両眼視差]]による奥行、運動方向)とその位置の情報(受容野の位置)を視覚前野に伝える。視覚前野の階層を上がるにつれて受容野のサイズが大きくなり、より広範囲の視野に含まれる刺激要素や刺激特徴の情報を取捨選択して統合する。より複雑な刺激特徴を抽出するとともに、視野情報から知覚情報への変換課程の一端を担う。ただし、領野間の情報表現の変化には重複も大きく、階層を上がる度に領野の性質が変化するというよりは、複雑な刺激特徴に選択的に反応するニューロンの割合が徐々に増えていくという見方の方が正確である。一方、刺激要素の位置情報やレチノトピーの性質は徐々に失われる。またV2やV4ではCOストライプやグロブ(後述。V2、V4の項を参照)ごとに局所的な視野地図の繰り返しが生じている。視覚情報の流れは主に[[背側視覚路]]と[[腹側視覚路]]とに分かれる<ref>'''L G Ungerleider, M Mishkin'''<br>Two cortical visual systems.<br>''Analysis of Visual Behavior'' (D J Ingle, M A Goodale, R J W Masfield, eds.), MIT Press, Cambridge, MA, 1982.</ref><ref><pubmed>2471327</pubmed></ref><ref><pubmed>1965642</pubmed></ref><ref><pubmed>1702462</pubmed></ref><ref><pubmed>1734518</pubmed></ref><ref><pubmed>8038571</pubmed></ref>(詳細は[[視覚経路]]、[[受容野]]を参照)。同一視野の情報が複数の領野で分散並列処理されており、外側膝状体やV1と異なり、視覚前野のある領野が局所的に損傷されても視野に欠損(暗点)は生じない。


===背側視覚路===
===背側視覚路===


 外側膝状体の大細胞系(M経路)由来の入力を受け、その性質(色選択性が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(太い縞)、V3、V5/MT、V6を介して後頭頂葉に出力し、運動や空間構造の認識に関与するとされる。領野間は[[有髄線維]]により結合され、伝導速度が速く、ミエリン染色で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。V5/MTのニューロンは等距離平面上のドットパターンの運動方向や注視点を基準とする平面の奥行き(絶対視差)に選択性を示す。V3、V6のニューロンは奥行方向の傾きや3次元方向の運動に選択性を示す。視覚前野が投射する後頭頂葉のうち、MST、VIP、7aは[[wikipedia:ja:オプティカルフロー|オプティカルフロー]](ドットパターンの発散、収縮、回転)などの3次元空間での動きの知覚に関与するとされる([[運動視]]を参照)。一方、視覚前野が投射する後頭頂葉のうち、V6A、LIPは空間の立体構造や3次元空間での位置関係を表し、身体座標による視線の移動や物体の把持操作に利用される。その際には、必ずしも刺激が意識されているわけではない<ref><pubmed>1374953</pubmed></ref>。
 外側膝状体の[[大細胞系]]([[M経路]])由来の入力を受け、その性質([[色選択性]]が無い、輝度コントラスト感度が高い、時間分解能が高い、空間分解能が低い)を引き継ぐ<ref name=ref1><pubmed>3746412</pubmed></ref><ref><pubmed>7931532</pubmed></ref>。色選択性を持たず、ほとんどのニューロンが運動(方向、速度)や両眼視差に選択性を示す。V2(太い縞)、V3、V5/MT、V6を介して後頭頂葉に出力し、運動や空間構造の認識に関与するとされる。領野間は[[有髄線維]]により結合され、伝導速度が速く、[[ミエリン染色]]で濃く染まる。V1より各領野へ直接投射があり、視覚刺激の呈示開始よりニューロンの反応が生じるまでの時間(潜時)を比較しても領野間の差がほとんどない<ref name=refa><pubmed>9636126</pubmed></ref>。V5/MTのニューロンは等距離平面上のドットパターンの運動方向や注視点を基準とする平面の奥行き([[絶対視差]])に選択性を示す。V3、V6のニューロンは奥行方向の傾きや3次元方向の運動に選択性を示す。視覚前野が投射する後頭頂葉のうち、[[MST野|MST]]、[[VIP野|VIP]]、[[7a]]は[[オプティカルフロー]](ドットパターンの発散、収縮、回転)などの3次元空間での動きの知覚に関与するとされる([[運動視]]を参照)。一方、視覚前野が投射する後頭頂葉のうち、[[V6A]]、LIPは空間の立体構造や3次元空間での位置関係を表し、[[身体座標]]による視線の移動や物体の[[把持操作]]に利用される。その際には、必ずしも刺激が意識されているわけではない<ref><pubmed>1374953</pubmed></ref>。


===腹側視覚路===
===腹側視覚路===


 外側膝状体の大細胞系(M経路)と小細胞系(P経路)から同程度の入力を受け、さらに顆粒細胞系(K経路)由来の入力も受けて<ref><pubmed>1525550</pubmed></ref>、多様な刺激特徴に選択性を示す。V2(細い縞、淡い縞)、V4を介して側頭葉に出力し、輪郭線(形状)や面の特性(色、テクスチャ)による物体認識に関与するとされる。色情報は小細胞系を介して主に腹側視覚路に伝えられるが、V4ニューロンの約半数しか色選択性を示さない。高次の領野ほど潜時が長い<ref name=refa />。傾きの変化(輪郭線の折れ曲がり(V2)、曲線(円弧、非カルテジアン図形(同心円、らせん、双曲線)、フーリエ図形)(V4))や、両眼視差の変化(受容野内外の相対視差(V2、V4)、3次元方向の線や平面の傾き(V3、V4))に選択性を示す。V1が輝度対比や色対比([[色覚]]を参照)に反応するのに対して、特定の色相や彩度(V2、V4)に選択性を示す。平面のテクスチャやパターン(V4)、自然画像に含まれる高次統計量(V2、V4)に選択性を示す。視覚前野が投射する側頭葉のTEO、TEは、複雑な輪郭線の形状、物体表面の3元形状、手や顔のようなもっと複雑な刺激を表し、物体の認識や表象(意識に上らせること)に関与するとされる<ref><pubmed>6470767</pubmed></ref><ref><pubmed>1448150</pubmed></ref><ref name=ref83><pubmed>8201425</pubmed></ref><ref name=ref84><pubmed>16785255</pubmed></ref>。
 外側膝状体の大細胞系(M経路)と[[小細胞系]]([[P経路]])から同程度の入力を受け、さらに[[顆粒細胞系]]([[K経路]])由来の入力も受けて<ref><pubmed>1525550</pubmed></ref>、多様な刺激特徴に選択性を示す。V2(細い縞、淡い縞)、V4を介して側頭葉に出力し、輪郭線(形状)や面の特性(色、テクスチャ)による物体認識に関与するとされる。色情報は小細胞系を介して主に腹側視覚路に伝えられるが、V4ニューロンの約半数しか色選択性を示さない。高次の領野ほど潜時が長い<ref name=refa />。傾きの変化(輪郭線の折れ曲がり(V2)、曲線(円弧、[[wj:非カルテジアン図形|非カルテジアン図形]]([[wj:同心円|同心円]]、[[wj:らせん|らせん]]、[[wj:双曲線|双曲線]])、[[wj:フーリエ図形|フーリエ図形]])(V4))や、両眼視差の変化(受容野内外の相対視差(V2、V4)、3次元方向の線や平面の傾き(V3、V4))に選択性を示す。V1が輝度対比や色対比([[色覚]]を参照)に反応するのに対して、特定の色相や彩度(V2、V4)に選択性を示す。平面のテクスチャやパターン(V4)、自然画像に含まれる高次統計量(V2、V4)に選択性を示す。視覚前野が投射する側頭葉の[[TEO]]、[[TE]]は、複雑な輪郭線の形状、物体表面の3次元形状、手や顔のようなもっと複雑な刺激を表し、物体の認識や表象(意識に上らせること)に関与するとされる<ref><pubmed>6470767</pubmed></ref><ref><pubmed>1448150</pubmed></ref><ref name=ref83><pubmed>8201425</pubmed></ref><ref name=ref84><pubmed>16785255</pubmed></ref>。


==重層的なネットワークと視覚情報の修飾==
==重層的なネットワークと視覚情報の修飾==


 視覚前野には階層的なネットワークの枠組みだけでは説明できない情報の流れが存在する。フィードフォワード投射以外にも、領野内の水平結合や領野間のフィードバック投射の寄与が大きく、背側と腹側の視覚路間にも結合が存在する。そのために視覚経路に沿った大まかな視覚情報の流れとともに、ネットワーク内で視覚情報が収束、拡散、周回を繰り返している。視覚前野のニューロンには、受容野外に呈示される視覚情報による修飾作用を強く受けるもの、視覚刺激の全体が表す大局的な“見え”に選択性を示すニューロンがある。また、注意と予測(後述)や真の運動検出(後述)のように非視覚情報による修飾作用を強く受けるものがある。修飾作用をもたらす情報の入力経路をはじめとして、このような重層的なネットワークのメカニズムはまだよく分っていない。
 視覚前野には階層的なネットワークの枠組みだけでは説明できない情報の流れが存在する。フィードフォワード投射以外にも、領野内の水平結合や領野間のフィードバック投射の寄与が大きく、背側と腹側の視覚路間にも結合が存在する。そのために視覚経路に沿った大まかな視覚情報の流れとともに、ネットワーク内で視覚情報が収束、拡散、周回を繰り返している。視覚前野のニューロンには、受容野外に呈示される視覚情報による修飾作用を強く受けるもの、視覚刺激の全体が表す大局的な“見え”に選択性を示すニューロンがある。また、[[注意]]と[[予測]](後述)や真の[[運動検出]](後述)のように非視覚情報による修飾作用を強く受けるものがある。修飾作用をもたらす情報の入力経路をはじめとして、このような重層的なネットワークのメカニズムはまだよく分っていない。


===フィードバック投射による修飾===
===フィードバック投射による修飾===
 V2ニューロンへの入力の2/3はV1からの投射であるとされ<ref><pubmed>12843271</pubmed></ref>、V1の活動を抑制するとV2ニューロンは反応しなくなる<ref><pubmed>405082</pubmed></ref><ref><pubmed>2600626</pubmed></ref>。一方、ほぼ同数の投射があるとされるV2からV1へのフィードバックを遮断すると、V1ニューロンの反応の選択性に顕著な変化はないが<ref><pubmed>6288886</pubmed></ref>、受容野外部に作用する周辺抑制が変化する<ref><pubmed>23658187</pubmed></ref>。V2ニューロンはV1以外にもV4、V5/MT、視床枕(pulvinar)から入力を受けている。これらの入力を遮断すると、V2ニューロンで自発発火頻度や反応強度が経時的に増減する<ref><pubmed>34089102</pubmed></ref>。大きな受容野と複雑な刺激特性を持つ高い階層のニューロンからのフィードバック投射が、低い階層のニューロンの反応選択性の形成に果たす役割はよく分かっていない。
 V2ニューロンへの入力の2/3はV1からの投射であるとされ<ref><pubmed>12843271</pubmed></ref>、V1の活動を抑制するとV2ニューロンは反応しなくなる<ref><pubmed>405082</pubmed></ref><ref><pubmed>2600626</pubmed></ref>。一方、ほぼ同数の投射があるとされるV2からV1へのフィードバックを遮断すると、V1ニューロンの反応の選択性に顕著な変化はないが<ref><pubmed>6288886</pubmed></ref>、受容野外部に作用する[[周辺抑制]]が変化する<ref><pubmed>23658187</pubmed></ref>。V2ニューロンはV1以外にもV4、V5/MT、[[視床枕]]([[pulvinar]])から入力を受けている。これらの入力を遮断すると、V2ニューロンで自発発火頻度や反応強度が経時的に増減する<ref><pubmed>34089102</pubmed></ref>。大きな受容野と複雑な刺激特性を持つ高い階層のニューロンからのフィードバック投射が、低い階層のニューロンの反応選択性の形成に果たす役割はよく分かっていない。


===非古典的受容野からの修飾===
===非古典的受容野からの修飾===
 (古典的)受容野外に呈示される視覚刺激が単独でニューロンを反応させることはないが、刺激特徴やそのパラメータ、受容野内外の刺激要素の組み合わせ方や空間配置により選択的な修飾作用を示すことがある。そうした作用を生じる受容野の周辺部分を非古典的受容野という。V1と同様に、V2のニューロンには、受容野よりも大きなサイズの線やドットパターンを呈示すると反応が抑制されるもの(周辺抑制)、受容野の中と外に同時に呈示された線分間の直列性が強いほど反応が増強(促通)するもの(文脈依存性修飾作用、contextual modulation)<ref><pubmed>11050142</pubmed></ref>がある。V4やV5/MTにも受容野よりも大きなサイズの視覚刺激を呈示すると反応が抑制されるニューロンがあり、古典的受容野の中と外での奥行きや運動(向き、速度)の対比を表すとされる<ref name=ref6><pubmed>2213146</pubmed></ref><ref><pubmed>7479984</pubmed></ref><ref><pubmed>17442769</pubmed></ref>([[受容野]]を参照)。
(古典的)受容野外に呈示される視覚刺激が単独でニューロンを反応させることはないが、刺激特徴やそのパラメータ、受容野内外の刺激要素の組み合わせ方や空間配置により選択的な修飾作用を示すことがある。そうした作用を生じる受容野の周辺部分を[[非古典的受容野]]という。V1と同様に、V2のニューロンには、受容野よりも大きなサイズの線やドットパターンを呈示すると反応が抑制されるもの(周辺抑制)、受容野の中と外に同時に呈示された線分間の直列性が強いほど反応が増強(促通)するもの([[文脈依存性修飾作用]]、contextual modulation)<ref><pubmed>11050142</pubmed></ref>がある。V4やV5/MTにも受容野よりも大きなサイズの視覚刺激を呈示すると反応が抑制されるニューロンがあり、古典的受容野の中と外での奥行きや運動(向き、速度)の対比を表すとされる<ref name=ref6><pubmed>2213146</pubmed></ref><ref><pubmed>7479984</pubmed></ref><ref><pubmed>17442769</pubmed></ref>([[受容野]]を参照)。


===大局的な情報===
===大局的な情報===
51行目: 49行目:
 知覚される視覚刺激の“見え”は、個々の視覚刺激よりも、視覚刺激全体が表す大局的な情報に従うことがある。視覚前野には、受容野内に呈示された個々の視覚刺激の刺激特徴よりも、受容野の内外に広がる視覚刺激全体が表す刺激特徴の配置や組み合わせに対して選択的に反応するニューロンがある。このことは、視覚前野において、視野情報から知覚情報への変換が始まることを示す。
 知覚される視覚刺激の“見え”は、個々の視覚刺激よりも、視覚刺激全体が表す大局的な情報に従うことがある。視覚前野には、受容野内に呈示された個々の視覚刺激の刺激特徴よりも、受容野の内外に広がる視覚刺激全体が表す刺激特徴の配置や組み合わせに対して選択的に反応するニューロンがある。このことは、視覚前野において、視野情報から知覚情報への変換が始まることを示す。


 主観的輪郭線(subjective contour) [[wikipedia:ja:カニッツァの三角形|カニッツァの三角形]]や縞模様の端部では、線や端点の配列から存在しない面や輪郭線を知覚できる。V2にはこうした主観的輪郭線の傾きにも反応するニューロンがある<ref><pubmed>6539501</pubmed></ref><ref><pubmed>2723747</pubmed></ref><ref><pubmed>2723748</pubmed></ref>。
'''[[主観的輪郭線]]'''(subjective contour) [[wj:カニッツァの三角形|カニッツァの三角形]]や縞模様の端部では、線や端点の配列から存在しない面や輪郭線を知覚できる。V2にはこうした主観的輪郭線の傾きにも反応するニューロンがある<ref><pubmed>6539501</pubmed></ref><ref><pubmed>2723747</pubmed></ref><ref><pubmed>2723748</pubmed></ref>。


 境界線の帰属(border ownership) 図と背景(地)の境界線は常に“図”の輪郭線として知覚されるが、輪郭線のどちら側が図であるかは視覚刺激全体で決まる。V2には、受容野を横切る輪郭線のどちら側が図であるかに選択的に反応するニューロンがある<ref><pubmed>10964965</pubmed></ref><ref><pubmed>15996555</pubmed></ref>。
'''境界線の帰属'''(border ownership) 図と背景(地)の境界線は常に“図”の輪郭線として知覚されるが、輪郭線のどちら側が図であるかは視覚刺激全体で決まる。V2には、受容野を横切る輪郭線のどちら側が図であるかに選択的に反応するニューロンがある<ref><pubmed>10964965</pubmed></ref><ref><pubmed>15996555</pubmed></ref>。


 逆相関ステレオグラム(anti-correlated stereogram) 点が面状に分布するドットパターンから、その面の奥行きを知覚できる。点の輝度コントラストを左右の目で逆にすると、点は見えても対応付けられず、奥行きをもった面を知覚できなくなる<ref><pubmed>18484828</pubmed></ref>。V2、V4にはある奥行きを持った面に選択的に反応するニューロンがあるが、点刺激の輝度コントラストを左右の目で逆にするとこれらのニューロンの反応が減弱する<ref><pubmed>15371518</pubmed></ref>。
'''[[逆相関ステレオグラム]]'''(anti-correlated stereogram) 点が面状に分布するドットパターンから、その面の奥行きを知覚できる。点の輝度コントラストを左右の目で逆にすると、点は見えても対応付けられず、奥行きをもった面を知覚できなくなる<ref><pubmed>18484828</pubmed></ref>。V2、V4にはある奥行きを持った面に選択的に反応するニューロンがあるが、点刺激の輝度コントラストを左右の目で逆にするとこれらのニューロンの反応が減弱する<ref><pubmed>15371518</pubmed></ref>。


 [[色の恒常性]]、明るさの恒常性 視覚刺激の波長成分は刺激物体の反射特性と照明光により決まるが、モンドリアン図形のように周囲に異なる色の刺激を同時に呈示すると、照明条件によらずに同じ色相や輝度が知覚される。V4には、受容野の中外に異なる色刺激を同時に呈示すると、照明条件によらず色相や輝度に同じ選択性を示すニューロンがある<ref><pubmed>6134287</pubmed></ref>。
'''[[色の恒常性]]、明るさの恒常性''' 視覚刺激の波長成分は刺激物体の反射特性と照明光により決まるが、モンドリアン図形のように周囲に異なる色の刺激を同時に呈示すると、照明条件によらずに同じ色相や輝度が知覚される。V4には、受容野の中外に異なる色刺激を同時に呈示すると、照明条件によらず色相や輝度に同じ選択性を示すニューロンがある<ref><pubmed>6134287</pubmed></ref>。


 窓枠問題(aperture problem) ある方向に動いている線刺激や縞模様を円形の窓を通して見ると、端点の動きが隠されて実際の運動方向が分からなくなる。この時、運動速度の最も低い、線の法線方向への運動が知覚される。一方、長方形の窓を通して動く縞模様を見ると、長辺沿いの端点の動きが運動方向として知覚される([[wikipedia:ja:バーバーポール錯視|バーバーポール錯視]])。V5/MTのニューロンには、受容野外に長方形の枠を呈示すると、枠沿いの端点の運動方向に選択性を示すものがある<ref>'''J A Movshon, E H Adelson, M S Gizzi, W T Newsome'''<br>The analysis of moving visual patterns.<br>''Study Group on Pattern Recognition Mechanisms'' (C Chagas, R Gattas, C Gross, eds. Vatican City: Pontifica Academia Scientiarum, pp.117-151,1985.</ref><ref><pubmed>15056706</pubmed></ref>。
'''[[窓枠問題]]'''(aperture problem) ある方向に動いている線刺激や縞模様を円形の窓を通して見ると、端点の動きが隠されて実際の運動方向が分からなくなる。この時、運動速度の最も低い、線の法線方向への運動が知覚される。一方、長方形の窓を通して動く縞模様を見ると、長辺沿いの端点の動きが運動方向として知覚される([[バーバーポール錯視]])。V5/MTのニューロンには、受容野外に長方形の枠を呈示すると、枠沿いの端点の運動方向に選択性を示すものがある<ref>'''J A Movshon, E H Adelson, M S Gizzi, W T Newsome'''<br>The analysis of moving visual patterns.<br>''Study Group on Pattern Recognition Mechanisms'' (C Chagas, R Gattas, C Gross, eds. Vatican City: Pontifica Academia Scientiarum, pp.117-151,1985.</ref><ref><pubmed>15056706</pubmed></ref>。


 格子模様(plaid pattern) 傾きの異なる二つの縞模様を重ねて動かすと、多くの場合は、格子模様が一方向に動いて見える。その運動方向は二つの縞の法線方向のベクトル和の方向になる。しかし、ふたつの縞模様の奥行きを変えたり、縞の重複部分の輝度を調整して半透明の縞模様が重なっているように見せると、二つの縞模様がすれ違ってそれぞれ別方向に動くようにしか見えない。V5/MTのニューロンには、格子模様が動いて見える条件では格子模様の運動方向に選択的に反応し、縞模様がすれ違うように見せる条件ではそれぞれの縞模様の法線方向に選択的に反応するものがある<ref name=ref8><pubmed>6520628</pubmed></ref><ref><pubmed>3447355</pubmed></ref><ref><pubmed>1641024</pubmed></ref>。
'''[[格子模様]]'''(plaid pattern) 傾きの異なる二つの縞模様を重ねて動かすと、多くの場合は、格子模様が一方向に動いて見える。その運動方向は二つの縞の法線方向のベクトル和の方向になる。しかし、ふたつの縞模様の奥行きを変えたり、縞の重複部分の輝度を調整して半透明の縞模様が重なっているように見せると、二つの縞模様がすれ違ってそれぞれ別方向に動くようにしか見えない。V5/MTのニューロンには、格子模様が動いて見える条件では格子模様の運動方向に選択的に反応し、縞模様がすれ違うように見せる条件ではそれぞれの縞模様の法線方向に選択的に反応するものがある<ref name=ref8><pubmed>6520628</pubmed></ref><ref><pubmed>3447355</pubmed></ref><ref><pubmed>1641024</pubmed></ref>。


===注意や予測(期待)===
===注意や予測(期待)===


 注意を向けることにより我々の知覚は視覚情報以外の能動的な修飾作用を受ける([[空間的注意]]、[[選択的注意]]を参照)。特定の場所、特定の刺激物体、色や形などの特定の刺激属性に注意を向けさせた状態で神経活動を記録すると、注意を向けていない場合とくらべて、同じ視覚刺激に対する反応の増強(ゲイン)、反応潜時の減少、刺激選択性の向上(応答特性)、受容野の縮小や移動(空間特性)などが観察される<ref><pubmed>7605061</pubmed></ref><ref><pubmed>12217174</pubmed></ref>。このような修飾作用は、V5/MT<ref><pubmed>8700227</pubmed></ref><ref><pubmed>10376597</pubmed></ref><ref><pubmed>10460265</pubmed></ref><ref><pubmed>10200212</pubmed></ref>やV4<ref><pubmed>4023713</pubmed></ref><ref><pubmed>9096154</pubmed></ref><ref><pubmed>9870971</pubmed></ref><ref><pubmed>10896165</pubmed></ref>で顕著であり、V1、V2では弱い<ref><pubmed>9120566</pubmed></ref><ref><pubmed>10024360</pubmed></ref>。局所電場電位の週数成分解析により、V4では注意が向けられると神経細胞活動の同期性が高まることが報告されている<ref><pubmed>11222864</pubmed></ref>。ヒトでも同様の作用が報告されている<ref><pubmed>9756472</pubmed></ref>。
 注意を向けることにより我々の知覚は視覚情報以外の能動的な修飾作用を受ける([[空間的注意]]、[[選択的注意]]を参照)。特定の場所、特定の刺激物体、色や形などの特定の刺激属性に注意を向けさせた状態で神経活動を記録すると、注意を向けていない場合とくらべて、同じ視覚刺激に対する反応の増強(ゲイン)、[[反応潜時]]の減少、刺激選択性の向上(応答特性)、受容野の縮小や移動([[空間特性]])などが観察される<ref><pubmed>7605061</pubmed></ref><ref><pubmed>12217174</pubmed></ref>。このような修飾作用は、V5/MT<ref><pubmed>8700227</pubmed></ref><ref><pubmed>10376597</pubmed></ref><ref><pubmed>10460265</pubmed></ref><ref><pubmed>10200212</pubmed></ref>やV4<ref><pubmed>4023713</pubmed></ref><ref><pubmed>9096154</pubmed></ref><ref><pubmed>9870971</pubmed></ref><ref><pubmed>10896165</pubmed></ref>で顕著であり、V1、V2では弱い<ref><pubmed>9120566</pubmed></ref><ref><pubmed>10024360</pubmed></ref>。[[局所電場電位]]の周波数成分解析により、V4では注意が向けられると神経細胞活動の[[同期性]]が高まることが報告されている<ref><pubmed>11222864</pubmed></ref>。ヒトでも同様の作用が報告されている<ref><pubmed>9756472</pubmed></ref>。


===真の運動の検出===
===真の運動の検出===


 我々は、空間内での物体の真の動き(real motion)と、視線や頭部の動きにより網膜上に生じる見かけの動き(self-induced motion)を区別することができる。そのためには視野上に生じる運動情報から眼球や頭部の運動で生じる運動情報を差し引くことが必要である。背側視覚路のニューロンには見かけの動きよりも真の動きに反応するものがあり(V3A、V6)、頭部座標に基づく真の動きの検出に関与するとされる<ref name=ref41 ><pubmed>2257915</pubmed></ref><ref name=ref42><pubmed>8845954</pubmed></ref><ref name=ref43><pubmed>22445349</pubmed></ref>。眼球や頭部の運動の情報がどのようにもたらされるのか分かっていない。
 我々は、空間内での物体の真の動き(real motion)と、視線や頭部の動きにより網膜上に生じる見かけの動き(self-induced motion)を区別することができる。そのためには視野上に生じる運動情報から眼球や頭部の運動で生じる運動情報を差し引くことが必要である。背側視覚路のニューロンには見かけの動きよりも真の動きに反応するものがあり([[V3A]]、V6)、[[頭部座標]]に基づく真の動きの検出に関与するとされる<ref name=ref41 ><pubmed>2257915</pubmed></ref><ref name=ref42><pubmed>8845954</pubmed></ref><ref name=ref43><pubmed>22445349</pubmed></ref>。眼球や頭部の運動の情報がどのようにもたらされるのか分かっていない。


==知覚の神経メカニズム==
==知覚の神経メカニズム==
75行目: 73行目:
 視覚前野の領野が特定の刺激特性に関与することから、視覚前野にも知覚判断の中枢として機能する領野が存在することが期待された。運動からの構造の知覚(後述)において知覚される運動方向の変化に合わせてV5/MTのニューロンの反応が変化することと、ドットパターンの運動方向の知覚(後述)において以下の条件を満たすことから、V5/MTのニューロンがそうした視覚中枢の一つであるとされる。しかし、V5/MT以外の領野では、ニューロン活動と個体の知覚判断との因果関係を明らかにする試みはあまり成功していない。
 視覚前野の領野が特定の刺激特性に関与することから、視覚前野にも知覚判断の中枢として機能する領野が存在することが期待された。運動からの構造の知覚(後述)において知覚される運動方向の変化に合わせてV5/MTのニューロンの反応が変化することと、ドットパターンの運動方向の知覚(後述)において以下の条件を満たすことから、V5/MTのニューロンがそうした視覚中枢の一つであるとされる。しかし、V5/MT以外の領野では、ニューロン活動と個体の知覚判断との因果関係を明らかにする試みはあまり成功していない。


 一群のニューロンが特定の視知覚の神経メカニズム(神経相関、neural correlates)であることの根拠として、サルなどの動物を強制選択課題で訓練し、課題遂行中に電気活動を記録して、①ニューロンの反応選択性が知覚判断に必要な情報を十分に表すこと、②試行ごとに動物の知覚判断とニューロンの反応強度の間に相関関係が存在すること、③ある領野を局所的に破壊、麻痺、電気刺激することにより動物の知覚判断を操作できること、④曖昧な視覚刺激に対する試行ごとの知覚判断の変動がニューロンの反応強度の変動と相関すること、⑤知覚判断の表示方法(動作)と無関係であること、などを示す必要がある<ref name=ref11><pubmed>1464765</pubmed></ref><ref name=ref12><pubmed>1607944</pubmed></ref><ref  name=ref13><pubmed>3385495</pubmed></ref>。V5/MTでは①領野内の大多数のニューロンが運動方向や両眼視差に選択性を示し、領野として特定の機能に特化していた、②運動方向や奥行に対する選択性が等しいニューロンがコラム状の狭い領域に集中しており、それらの操作が容易であった、③結果的に知覚判断が比較的小数のニューロンの活動に依存していたことが、因果関係を検証する際の利点となったと考えられる。
 一群のニューロンが特定の視知覚の神経メカニズム(神経相関、neural correlates)であることの根拠として、サルなどの動物を[[強制選択課題]]で訓練し、課題遂行中に電気活動を記録して、①ニューロンの反応選択性が知覚判断に必要な情報を十分に表すこと、②試行ごとに動物の知覚判断とニューロンの反応強度の間に相関関係が存在すること、③ある領野を局所的に破壊、麻痺、電気刺激することにより動物の知覚判断を操作できること、④曖昧な視覚刺激に対する試行ごとの知覚判断の変動がニューロンの反応強度の変動と相関すること、⑤知覚判断の表示方法(動作)と無関係であること、などを示す必要がある<ref name=ref11><pubmed>1464765</pubmed></ref><ref name=ref12><pubmed>1607944</pubmed></ref><ref  name=ref13><pubmed>3385495</pubmed></ref>。V5/MTでは①領野内の大多数のニューロンが運動方向や両眼視差に選択性を示し、領野として特定の機能に特化していた、②運動方向や奥行に対する選択性が等しいニューロンがコラム状の狭い領域に集中しており、それらの操作が容易であった、③結果的に知覚判断が比較的小数のニューロンの活動に依存していたことが、因果関係を検証する際の利点となったと考えられる。


 運動からの構造の知覚(structure from motion)<ref><pubmed>9565031</pubmed></ref> 垂直に立てた透明な円筒の表面にドットパターンを貼り付ける。この円筒を回転させた時に生じる各点の左右の動きを平面なスクリーンに呈示すると、回転する円筒が知覚される。両眼視差の情報がないので、画像からは円筒の前面の点が左右どちら方向に動くかは分からず、知覚される円筒の回転方向は不定期に変化する。知覚される回転方向の変化に合わせて反応強度が変化するニューロンがV5/MTで見つかった。
 運動からの構造の知覚(structure from motion)<ref><pubmed>9565031</pubmed></ref> 垂直に立てた透明な円筒の表面にドットパターンを貼り付ける。この円筒を回転させた時に生じる各点の左右の動きを平面なスクリーンに呈示すると、回転する円筒が知覚される。両眼視差の情報がないので、画像からは円筒の前面の点が左右どちら方向に動くかは分からず、知覚される円筒の回転方向は不定期に変化する。知覚される回転方向の変化に合わせて反応強度が変化するニューロンがV5/MTで見つかった。
83行目: 81行目:
==視覚情報処理のメカニズム==
==視覚情報処理のメカニズム==


 視覚前野における視覚情報処理のプロセスやメカニズムを解明するには、ニューロンや機能的領野の結合関係、視覚刺激とニューロンの反応特性と知覚判断の間の因果関係に加えて、背後にある計算理論の理解する必要がある([[Marrの計算論]]を参照)。V1ニューロンは視覚情報(画像情報)に対してある種の時空間フィルタ([[受容野]][[視差エネルギーモデル]]を参照)として機能すると考えられるが、視覚前野のモデル研究では階層的なネットワークの枠組みでV1、V2からの入力をもとにV2,V4,V5/MTの刺激選択性がどのように形成されるのかがテーマとなる。各領野のニューロンが示す刺激特徴(輪郭線の形状、面の特性、運動パターン)の検出、さらには修飾作用や反応選択性の不変性(位置、サイズ、手がかり刺激など)を説明する神経モデルが提案されている(詳細は[[wikipedia:ja:計算論的神経科学|計算論的神経科学]]を参照)。
 視覚前野における視覚情報処理のプロセスやメカニズムを解明するには、ニューロンや機能的領野の結合関係、視覚刺激とニューロンの反応特性と知覚判断の間の因果関係に加えて、背後にある計算理論の理解する必要がある([[Marrの計算論]]を参照)。V1ニューロンは視覚情報(画像情報)に対してある種の[[時空間フィルタ]]([[受容野]][[視差エネルギーモデル]]を参照)として機能すると考えられるが、視覚前野のモデル研究では階層的なネットワークの枠組みでV1、V2からの入力をもとにV2,V4,V5/MTの刺激選択性がどのように形成されるのかがテーマとなる。各領野のニューロンが示す刺激特徴(輪郭線の形状、面の特性、運動パターン)の検出、さらには修飾作用や反応選択性の不変性(位置、サイズ、手がかり刺激など)を説明する神経モデルが提案されている(詳細は[[計算論的神経科学]]を参照)。


 計算機技術の進歩に伴い、大規模なモデルのフィッティングや学習によるパラメータやネットワークモデルの最適化と統計学的な解析が可能となった。今日のモデル研究においては、ニューロンが示す反応を定量的に説明する研究が盛んである。当初は、特定の刺激要素(線成分、色(輝度)成分、運動成分、空間周波数成分)への反応を組み合わせるタイプのモデル研究が多かった。例えば、輪郭線の表現であれば、傾き、長さ、位置で表される線分(パーツ)を複数用意し、それらの組み合わせて輪郭線を表現すると考える。これを説明するモデルでは、実際の入力の代わりに、パーツ単体に対するニューロンの反応ないしはパーツを表す入力(例えばV1モデルの出力)をもとに輪郭線に対する反応を予測する。このようなモデルでは、個々のニューロンの反応に対してはモデルのパラメータを最適化する<ref name=ref2><pubmed>11698538</pubmed></ref><ref><pubmed>12426571</pubmed></ref><ref><pubmed>8570605</pubmed></ref><ref><pubmed>17041595</pubmed></ref>。また、重層的なネットワークの性質として、フィードバック投射や受容外から作用する興奮性/抑制性の修飾作用を取り入れたモデルも提案されている<ref name=refc><pubmed>21091803</pubmed></ref><ref><pubmed>16768360</pubmed></ref><ref><pubmed>8261126</pubmed></ref>。その後、[[wikipedia:ja: ニューラルネットワーク|ニューラルネットワーク]]のように入力層(例えばV1モデルの2次元配列)の出力を組み合わせるタイプのモデル研究が多くなった。ドットパターン、テクスチャ、自然画像に特定の刺激要素を見いだすことは難しいが、時空間フィルタ(V1モデル)の出力を組み合わせることで、視覚刺激に含まれる空間周波数成分の分布や高次統計量が寄与することが示された(V2,V4)<ref><pubmed>16987926</pubmed></ref><ref><pubmed>19778517</pubmed></ref><ref name=ref91><pubmed>21841776</pubmed></ref><ref name=ref92><pubmed>23685719</pubmed></ref><ref name=ref93><pubmed>25535362</pubmed></ref>。近年では、不特定多数の自然画像を視覚刺激とするデータ駆動型の解析も増えている。スパース符号化(sparse coding)や[[wikipedia:ja:深層学習|深層学習]]をキーワードにして、ネットワークモデル自体を最適化するタイプの研究が盛んになっている<ref><pubmed>17596412</pubmed></ref><ref><pubmed>26203137</pubmed></ref><ref><pubmed>27140760</pubmed></ref><ref><pubmed>22114163</pubmed></ref><ref>'''H Lee, C Ekanadham, A Y Ng'''<br>Sparse deep belief net model for visual area V2.<br>''Advances Neural Information Processing Systems, Vol.20'' (J C Platt, D Koller, Y Singer, S T Roweis, eds. ,pp873-880,2008.</ref>。
 計算機技術の進歩に伴い、大規模なモデルのフィッティングや学習によるパラメータやネットワークモデルの最適化と統計学的な解析が可能となった。今日のモデル研究においては、ニューロンが示す反応を定量的に説明する研究が盛んである。当初は、特定の刺激要素(線成分、色(輝度)成分、運動成分、空間周波数成分)への反応を組み合わせるタイプのモデル研究が多かった。例えば、輪郭線の表現であれば、傾き、長さ、位置で表される線分(パーツ)を複数用意し、それらの組み合わせて輪郭線を表現すると考える。これを説明するモデルでは、実際の入力の代わりに、パーツ単体に対するニューロンの反応ないしはパーツを表す入力(例えばV1モデルの出力)をもとに輪郭線に対する反応を予測する。このようなモデルでは、個々のニューロンの反応に対してはモデルのパラメータを最適化する<ref name=ref2><pubmed>11698538</pubmed></ref><ref><pubmed>12426571</pubmed></ref><ref><pubmed>8570605</pubmed></ref><ref><pubmed>17041595</pubmed></ref>。


 近年、深層ニューラルネットワークによる視覚情報処理技術が著しく進歩している(詳細は[[wikipedia:ja:人工知能|人工知能]]を参照)。その中間層(隠れ層)のノードがV1ないしV4のような特性を持つことが示されている<ref><pubmed>30570484</pubmed></ref>。脳のメカニズムをそのまま再現することが目的のネットワークモデルではないが、モデルのリバースエンジニアリングが視覚前野のメカニズム研究の手がかりを与えることが期待される<ref><pubmed>29163117</pubmed></ref>。
 また、重層的なネットワークの性質として、[[フィードバック投射]]や受容外から作用する[[興奮]]性/[[抑制]]性の修飾作用を取り入れたモデルも提案されている<ref name=refc><pubmed>21091803</pubmed></ref><ref><pubmed>16768360</pubmed></ref><ref><pubmed>8261126</pubmed></ref>。その後、[[ニューラルネットワーク]]のように入力層(例えばV1モデルの2次元配列)の出力を組み合わせるタイプのモデル研究が多くなった。ドットパターン、テクスチャ、自然画像に特定の刺激要素を見いだすことは難しいが、時空間フィルタ(V1モデル)の出力を組み合わせることで、視覚刺激に含まれる空間周波数成分の分布や高次統計量が寄与することが示された(V2,V4)<ref><pubmed>16987926</pubmed></ref><ref><pubmed>19778517</pubmed></ref><ref name=ref91><pubmed>21841776</pubmed></ref><ref name=ref92><pubmed>23685719</pubmed></ref><ref name=ref93><pubmed>25535362</pubmed></ref>。
 
 近年では、不特定多数の自然画像を視覚刺激とするデータ駆動型の解析も増えている。[[スパース符号化]](sparse coding)や[[深層学習]]をキーワードにして、ネットワークモデル自体を最適化するタイプの研究が盛んになっている<ref><pubmed>17596412</pubmed></ref><ref><pubmed>26203137</pubmed></ref><ref><pubmed>27140760</pubmed></ref><ref><pubmed>22114163</pubmed></ref><ref>'''H Lee, C Ekanadham, A Y Ng'''<br>Sparse deep belief net model for visual area V2.<br>''Advances Neural Information Processing Systems, Vol.20'' (J C Platt, D Koller, Y Singer, S T Roweis, eds. ,pp873-880,2008.</ref>。
 
 近年、深層ニューラルネットワークによる視覚情報処理技術が著しく進歩している(詳細は[[人工知能]]を参照)。その中間層(隠れ層)のノードがV1ないしV4のような特性を持つことが示されている<ref><pubmed>30570484</pubmed></ref>。脳のメカニズムをそのまま再現することが目的のネットワークモデルではないが、モデルのリバースエンジニアリングが視覚前野のメカニズム研究の手がかりを与えることが期待される<ref><pubmed>29163117</pubmed></ref>。


==各領野の解剖学的特徴とその機能==
==各領野の解剖学的特徴とその機能==
95行目: 97行目:
 18野の一部。V1に隣接する帯状の領域。背側部が反対側の下視野を、腹側部が反対側の上視野を表す。V1の主な出力先である。V1から主な入力を受け、V1 へ強いフィードバック投射する。V3、V4、V5/MTへ出力する。V1以外にMT、V4からのフィードバック入力および視床枕(pulvinar)から入力を受ける。
 18野の一部。V1に隣接する帯状の領域。背側部が反対側の下視野を、腹側部が反対側の上視野を表す。V1の主な出力先である。V1から主な入力を受け、V1 へ強いフィードバック投射する。V3、V4、V5/MTへ出力する。V1以外にMT、V4からのフィードバック入力および視床枕(pulvinar)から入力を受ける。


 チトクローム酸化酵素(CO)により染色すると、太い縞(thick stripe)、細い縞(thin stripe)、淡い縞(inter stripe、pale stripe)の縞状の領域(COストライプ)に区分され、外側から内側へ淡―太―淡―細と縞領域が繰り返し分布する<ref><pubmed>7751939</pubmed></ref><ref><pubmed>12385630</pubmed></ref><ref><pubmed>12385631</pubmed></ref>。太い縞はV1(4b層)より大細胞系の入力を受け、V3、MTに投射するので、背側視覚路に属するとされている。太い縞のニューロンは運動方向、速度、両眼視差に選択性を示す。細い縞はV1(ブロブ領域)より入力を受けV4に投射するので、腹側視覚路に属するとされている。細い縞のニューロンは色相に選択性を示す。淡い縞はV1(2/3層のブロブ間隙領域)より小細胞系の入力を受け、V4に投射するので、腹側視覚路に属するとされている。淡い縞のニューロンは線の傾きに選択に反応し、エンドストップ抑制により端点を表す。Livingston以降、V2が3つの視覚経路(太い縞、細い縞、淡い縞)に分かれており、それぞれが運動、色、形の情報処理を分担するとされてきた<ref><pubmed>3283936</pubmed></ref>。しかし、Sincichらによれば①細い縞はV1の2/3層のブロブ領域以外に4a, 4b, 5/6層からも入力を受け、②太い縞と淡い縞は2/3層のブロブ間隙領域と4a,4b,5/6層から入力を受けて、線の傾きに選択性を示し、③太い縞と淡い縞の違いは出力先(V4、V5/MT)の違いであるという。従って、各縞が受け取る情報の差はそれほど明瞭でなく、V1のブロブ領域とブロブ間隙領域に発する2つの経路に大別されるという<ref><pubmed>16022598</pubmed></ref>。また、太い縞の外側に隣接する淡い縞にはV1(4b層)からの入力があり太い縞と似た反応を示し、太い縞の内側に隣接する淡い縞と区別されることが示された<ref><pubmed>23843523</pubmed></ref>。
 [[チトクローム酸化酵素]](CO)により染色すると、太い縞(thick stripe)、細い縞(thin stripe)、淡い縞(inter stripe、pale stripe)の縞状の領域([[COストライプ]])に区分され、外側から内側へ淡―太―淡―細と縞領域が繰り返し分布する<ref><pubmed>7751939</pubmed></ref><ref><pubmed>12385630</pubmed></ref><ref><pubmed>12385631</pubmed></ref>。太い縞はV1([[4b層]])より大細胞系の入力を受け、V3、MTに投射するので、背側視覚路に属するとされている。太い縞のニューロンは運動方向、速度、両眼視差に選択性を示す。細い縞はV1(ブロブ領域)より入力を受けV4に投射するので、腹側視覚路に属するとされている。細い縞のニューロンは色相に選択性を示す。淡い縞はV1(2/3層のブロブ間隙領域)より小細胞系の入力を受け、V4に投射するので、腹側視覚路に属するとされている。淡い縞のニューロンは線の傾きに選択に反応し、エンドストップ抑制により端点を表す。
 
 [[w:Margaret Livingstone|Livingston]]以降、V2が3つの視覚経路(太い縞、細い縞、淡い縞)に分かれており、それぞれが運動、色、形の情報処理を分担するとされてきた<ref><pubmed>3283936</pubmed></ref>。しかし、Sincichらによれば①細い縞はV1の2/3層のブロブ領域以外に4a, 4b, 5/6層からも入力を受け、②太い縞と淡い縞は2/3層のブロブ間隙領域と4a,4b,5/6層から入力を受けて、線の傾きに選択性を示し、③太い縞と淡い縞の違いは出力先(V4、V5/MT)の違いであるという。従って、各縞が受け取る情報の差はそれほど明瞭でなく、V1のブロブ領域とブロブ間隙領域に発する2つの経路に大別されるという<ref><pubmed>16022598</pubmed></ref>。また、太い縞の外側に隣接する淡い縞にはV1(4b層)からの入力があり太い縞と似た反応を示し、太い縞の内側に隣接する淡い縞と区別されることが示された<ref><pubmed>23843523</pubmed></ref>。


 V2のニューロンはV1のニューロンよりも概して低い空間周波数成分によく反応する。大局的な情報(主観的輪郭線の傾き、輪郭線を挟んだ図と地の向き、逆相関ステレオグラム)、ドットパターンの面の奥行き段差が示す境界線の傾き<ref name=refb><pubmed>11967544</pubmed></ref>、受容野を横切る輪郭線の折れ曲がり<ref><pubmed>10684908</pubmed></ref><ref><pubmed>15056711</pubmed></ref>、傾きや周波数成分の異なる縞模様の組み合わせ<ref><pubmed>20147538</pubmed></ref>、自然画像に含まれる高次の統計量成分<ref name=ref91 /><ref name=ref92 />などに選択性を示すニューロンがある。
 V2のニューロンはV1のニューロンよりも概して低い空間周波数成分によく反応する。大局的な情報(主観的輪郭線の傾き、輪郭線を挟んだ図と地の向き、逆相関ステレオグラム)、ドットパターンの面の奥行き段差が示す境界線の傾き<ref name=refb><pubmed>11967544</pubmed></ref>、受容野を横切る輪郭線の折れ曲がり<ref><pubmed>10684908</pubmed></ref><ref><pubmed>15056711</pubmed></ref>、傾きや周波数成分の異なる縞模様の組み合わせ<ref><pubmed>20147538</pubmed></ref>、自然画像に含まれる高次の統計量成分<ref name=ref91 /><ref name=ref92 />などに選択性を示すニューロンがある。


===V3野===
===V3野===

案内メニュー