16,040
回編集
細 (→神経細胞モデル間の比較) |
細編集の要約なし |
||
1行目: | 1行目: | ||
<div align="right"> | |||
<font size="+1">[https://researchmap.jp/ryokoba 小林 亮太]</font><br> | |||
''東京大学大学院 新領域創成科学研究科''<br> | |||
<font size="+1">[https://researchmap.jp/katsunorikitano 北野 勝則]</font><br> | |||
''立命館大学 情報理工学部''<br> | |||
DOI:<selfdoi /> 原稿受付日:2021年7月26日 原稿完成日:2021年10月2日<br> | |||
担当編集委員:[http://researchmap.jp/123qweasd 五味 裕章](NTTコミュニケーション科学基礎研究所 人間情報研究部)<br> | |||
</div> | |||
{{box|text= 積分発火モデルは、神経細胞の電気活動を数理的に記述するモデルの1つである。神経細胞の電気的状態を膜電位により表し、神経細胞の出力である活動電位 (スパイク) の生成過程の記述を省略し、活動電位の閾値以下の範囲における膜電位の変化を微分方程式により記述する。活動電位の生成機構もモデル化するHodgkin-Huxleyモデルよりも計算コストが少ないため、膜電位変化を記述する神経細胞モデルとして、広く用いられている。}} | {{box|text= 積分発火モデルは、神経細胞の電気活動を数理的に記述するモデルの1つである。神経細胞の電気的状態を膜電位により表し、神経細胞の出力である活動電位 (スパイク) の生成過程の記述を省略し、活動電位の閾値以下の範囲における膜電位の変化を微分方程式により記述する。活動電位の生成機構もモデル化するHodgkin-Huxleyモデルよりも計算コストが少ないため、膜電位変化を記述する神経細胞モデルとして、広く用いられている。}} | ||
==はじめに== | ==はじめに== | ||
神経細胞の電気的特性については、HodgkinとHuxleyによって細胞膜上に発現しているイオンチャネルの膜電位依存性とそれらによる活動電位生成機構、およびその数理的な表現が明らかにされたが<ref name=Hodgkin1952><pubmed>12991237</pubmed></ref>[1]、それ以前にLapicqueによって、細胞膜のキャパシタとしての特性や神経興奮現象(活動電位生成)に対する閾値となる電位、および、閾値に到るまでの過程について詳細に調べられていた<ref name=Lapicque1907>Lapicque, L. (1907).<br>Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization. Journal de physiologie et de pathologie générale, 9, 620-635.</ref><ref name=Lapicque2007><pubmed>18046573</pubmed></ref> [2,3]。入力として与えられた電流はキャパシタとしての特性により膜電位に積算(integrate)される。膜電位が上昇して閾値に到達すると、活動電位を発生(fire)する。この膜電位の閾値に達するまでの積算過程をモデル化したのが、積分発火モデルである。このモデルでは活動電位生成中の膜電位変動は記述しない。それは非常に短時間(< 2msec)の過程であり、膜電位挙動のほとんどの時間が閾値に到るまでの積算過程であるとみなせるためである。神経細胞の状態を表す変数が膜電位のみの1変数であるため、計算量も多くない。このため、多くの研究において、採用されてきたモデルである。一方で、神経細胞応答の本質であるアクティブな膜伝導性を一切無視したモデルであるため、実際の神経細胞応答とは異なる特性を示すことから、その拡張モデルも多く提案されてきた。以下では、まず、基本となる積分発火モデルであるLeaky Integrate-and-Fireモデル(LIFモデル、と呼ばれる)を解説し、次にその拡張モデルとして代表的なものを紹介する。 | 神経細胞の電気的特性については、HodgkinとHuxleyによって細胞膜上に発現しているイオンチャネルの膜電位依存性とそれらによる活動電位生成機構、およびその数理的な表現が明らかにされたが<ref name=Hodgkin1952><pubmed>12991237</pubmed></ref>[1]、それ以前にLapicqueによって、細胞膜のキャパシタとしての特性や神経興奮現象(活動電位生成)に対する閾値となる電位、および、閾値に到るまでの過程について詳細に調べられていた<ref name=Lapicque1907>'''Lapicque, L. (1907).'''<br>Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization. Journal de physiologie et de pathologie générale, 9, 620-635.</ref><ref name=Lapicque2007><pubmed>18046573</pubmed></ref> [2,3]。入力として与えられた電流はキャパシタとしての特性により膜電位に積算(integrate)される。膜電位が上昇して閾値に到達すると、活動電位を発生(fire)する。この膜電位の閾値に達するまでの積算過程をモデル化したのが、積分発火モデルである。このモデルでは活動電位生成中の膜電位変動は記述しない。それは非常に短時間(< 2msec)の過程であり、膜電位挙動のほとんどの時間が閾値に到るまでの積算過程であるとみなせるためである。神経細胞の状態を表す変数が膜電位のみの1変数であるため、計算量も多くない。このため、多くの研究において、採用されてきたモデルである。一方で、神経細胞応答の本質であるアクティブな膜伝導性を一切無視したモデルであるため、実際の神経細胞応答とは異なる特性を示すことから、その拡張モデルも多く提案されてきた。以下では、まず、基本となる積分発火モデルであるLeaky Integrate-and-Fireモデル(LIFモデル、と呼ばれる)を解説し、次にその拡張モデルとして代表的なものを紹介する。 | ||
[[ファイル:Kitano 積分発火モデルFig1.png|サムネイル|450px|'''図1. 積分発火モデルとMATモデル(拡張された積分発火モデルを参照)の模式図''' | [[ファイル:Kitano 積分発火モデルFig1.png|サムネイル|450px|'''図1. 積分発火モデルとMATモデル(拡張された積分発火モデルを参照)の模式図''' | ||
102行目: | 112行目: | ||
::<math>V(t)=V_{reset}e^{-t/\tau{_m}}+\int_0^t I(t-s)e^{-s/\tau{_m}}ds</math> (10) | ::<math>V(t)=V_{reset}e^{-t/\tau{_m}}+\int_0^t I(t-s)e^{-s/\tau{_m}}ds</math> (10) | ||
と書ける。表記を単純にするため、<math>E_L=0</math>とした。式(10) を以下のように拡張したモデルはSpike Response Model (SRM) と呼ばれている<ref name=Gerstner2002>Gerstner, W. & Kistler, W.M. (2002). <br>Spiking neuron models: Single neurons, populations, plasticity., Cambridge: Cambridge University Press. [https://doi.org/10.1017/CBO9780511815706 PDF] </ref> [23] 。 | と書ける。表記を単純にするため、<math>E_L=0</math>とした。式(10) を以下のように拡張したモデルはSpike Response Model (SRM) と呼ばれている<ref name=Gerstner2002>'''Gerstner, W. & Kistler, W.M. (2002).'''<br>Spiking neuron models: Single neurons, populations, plasticity., Cambridge: Cambridge University Press. [https://doi.org/10.1017/CBO9780511815706 PDF] </ref> [23] 。 | ||
::<math>V(t)=\eta(t)+\int_0^t \kappa(s)I(t-s)ds</math> ((11) | ::<math>V(t)=\eta(t)+\int_0^t \kappa(s)I(t-s)ds</math> ((11) |