16,040
回編集
細 (→非線形積分発火モデル) |
細 (→非線形積分発火モデル) |
||
65行目: | 65行目: | ||
::<math>F(V)=-G_L(V-E_L)\mbox{ }\cdots(2)</math> | ::<math>F(V)=-G_L(V-E_L)\mbox{ }\cdots(2)</math> | ||
という線形微分方程式<math>F(V)</math>が1次関数) である。しかし、神経細胞は非線形システムであり、Hodgkin-Huxleyモデルも非線形微分方程式である。このため、<math>F(V)</math>を非線形関数で表したモデルがいくつか提案されてきた。また、Hodgkin- | という線形微分方程式<math>F(V)</math>が1次関数) である。しかし、神経細胞は非線形システムであり、Hodgkin-Huxleyモデルも非線形微分方程式である。このため、<math>F(V)</math>を非線形関数で表したモデルがいくつか提案されてきた。また、Hodgkin-Huxleyモデルから、早いチャネル変数を膜電位<math>V</math>の関数に置き換え、遅いチャネル変数を定数に置き換える近似により、非線形積分発火モデルを導出できる<ref name=Abbott1990>'''Abbott, L.F. & Kepler, T.B. (1990).'''<br>Model neurons: from Hodgkin-Huxley to Hopfield." In Statistical mechanics of neural networks (pp. 5-18). Springer, Berlin, Heidelberg. | ||
[https://doi.org/10.1007/3540532676_37 PDF]</ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>[4,5]。 | [https://doi.org/10.1007/3540532676_37 PDF]</ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>[4,5]。 | ||
1つ目の拡張は、<math>F(V)</math>を2次関数<math>F(V)=\tfrac{G_L}{2\Delta_r}(V-V_r)^2</math>に拡張したQuadratic Integrate and Fire (QIF) モデルである。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>[6]。Quadratic Integrate and | 1つ目の拡張は、<math>F(V)</math>を2次関数<math>F(V)=\tfrac{G_L}{2\Delta_r}(V-V_r)^2</math>に拡張したQuadratic Integrate and Fire (QIF) モデルである。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>[6]。Quadratic Integrate and Fireモデルには限られたタイプの発火パターンしか再現できないという問題があった。そこで、IzhikevichはQuadratic Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Izhikevich2003><pubmed>18244602</pubmed><br>MATLABコードが著者の [https://www.izhikevich.org/publications/spikes.htm ホームページ]にある。</ref>[7]。 | ||
::<math>C_m\frac{dV}{dt}=0.04V^2+5V+140-U+I_{ext}\mbox{ }\cdots(3)</math> | ::<math>C_m\frac{dV}{dt}=0.04V^2+5V+140-U+I_{ext}\mbox{ }\cdots(3)</math> | ||
::<math>\frac{dV}{dt}=a(bV-U)\mbox{ }\cdots(4)</math> | ::<math>\frac{dV}{dt}=a(bV-U)\mbox{ }\cdots(4)</math> | ||
ここで、<math>a,b</math>はパラメータである。膜電位<math>V</math>が閾値<math>30 mV</math>に達すると、変数<math>V</math>は<math>c</math> | ここで、<math>a,b</math>はパラメータである。膜電位<math>V</math>が閾値<math>30 mV</math>に達すると、変数<math>V</math>は<math>c</math>に、変数<math>U</math>は<math>U+d</math>にリセットされる。このモデルは、多様な神経細胞<ref name=McCormick1985><pubmed>2999347</pubmed></ref> <ref name=Nowak2003><pubmed>12626627</pubmed></ref>[8,9]が持つ、さまざまな発火特性を再現できる。 | ||
2つ目の拡張は、リーク電流に加え、指数関数のスパイク生成電流を考慮に入れたExponential Integrate and Fire (EIF) モデルである<ref name=Fourcaud-Trocme2003><pubmed>14684865</pubmed></ref>[10]。 | 2つ目の拡張は、リーク電流に加え、指数関数のスパイク生成電流を考慮に入れたExponential Integrate and Fire (EIF) モデルである<ref name=Fourcaud-Trocme2003><pubmed>14684865</pubmed></ref>[10]。 |