「積分発火モデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
12行目: 12行目:


==はじめに==
==はじめに==
 神経細胞の電気的特性については、HodgkinとHuxleyによって細胞膜上に発現しているイオンチャネルの膜電位依存性とそれらによる活動電位生成機構、およびその数理的な表現が明らかにされたが <ref name=Hodgkin1952><pubmed>12991237</pubmed></ref>、それ以前にLapicqueによって、細胞膜のキャパシタとしての特性や神経興奮現象(活動電位生成)に対する閾値となる電位、および、閾値に到るまでの過程について詳細に調べられていた<ref name=Lapicque1907>'''Lapicque, L. (1907).'''<br>Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization. Journal de physiologie et de pathologie générale, 9, 620-635.</ref><ref name=Lapicque2007><pubmed>18046573</pubmed></ref>。脂質二重層からなる神経細胞の細胞膜により、電荷をもつイオンは細胞膜からの流出入を妨げてられている。細胞外の電位を基準電位 (0 mV) とした場合、細胞内の電位を表す膜電位は、通常、負の値をもつ過分極した状態(およそ–70 mV付近)をとる。神経細胞は、細胞膜の外側と内側にそれぞれ正の電荷および負の電荷をもつイオンを帯電させた状態になり、細胞膜はキャパシタの性質を有する。
 神経細胞の電気的特性については、[[wj:アラン・ロイド・ホジキン|Hodgkin]]と[[wj:アンドリュー・フィールディング・ハクスリー|Huxley]]によって[[細胞膜]]上に発現している[[イオンチャネル]]の[[膜電位]]依存性とそれらによる[[活動電位]]生成機構、およびその数理的な表現が明らかにされたが <ref name=Hodgkin1952><pubmed>12991237</pubmed></ref>、それ以前にLapicqueによって、細胞膜の[[キャパシタ]]としての特性や神経興奮現象(活動電位生成)に対する閾値となる電位、および、閾値に到るまでの過程について詳細に調べられていた<ref name=Lapicque1907>'''Lapicque, L. (1907).'''<br>Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization. Journal de physiologie et de pathologie générale, 9, 620-635.</ref><ref name=Lapicque2007><pubmed>18046573</pubmed></ref>。[[脂質二重層]]からなる神経細胞の細胞膜により、電荷をもつイオンは細胞膜からの流出入を妨げてられている。細胞外の電位を基準電位 (0 mV) とした場合、細胞内の電位を表す膜電位は、通常、負の値をもつ[[過分極]]した状態(およそ–70 mV付近)をとる。神経細胞は、細胞膜の外側と内側にそれぞれ正の電荷および負の電荷をもつイオンを帯電させた状態になり、細胞膜はキャパシタの性質を有する。


 入力として与えられた電流はこの細胞膜のキャパシタとしての特性により膜電位に積算(integrate)される。膜電位が上昇して閾値に到達すると、活動電位を発生(fire)する。この膜電位の閾値に達するまでの積算過程をモデル化したのが、積分発火モデルである。このモデルでは活動電位生成中の膜電位変動は記述しない。それは非常に短時間(< 2msec)の過程であり、膜電位挙動のほとんどの時間が閾値に到るまでの積算過程であるとみなせるためである。神経細胞の状態を表す変数が膜電位のみの1変数であるため、計算量も多くない。このため、多くの研究において、採用されてきたモデルである。
 入力として与えられた電流はこの細胞膜のキャパシタとしての特性により膜電位に積算(integrate)される。膜電位が上昇して閾値に到達すると、活動電位を発生(fire)する。この膜電位の閾値に達するまでの積算過程をモデル化したのが、積分発火モデルである。このモデルでは活動電位生成中の膜電位変動は記述しない。それは非常に短時間(< 2msec)の過程であり、膜電位挙動のほとんどの時間が閾値に到るまでの積算過程であるとみなせるためである。神経細胞の状態を表す変数が膜電位のみの1変数であるため、計算量も多くない。このため、多くの研究において、採用されてきたモデルである。


 一方、神経細胞の細胞膜上に発現したタンパク質であるイオンチャネルが、その状態によってイオンの流出入を促す場合があり、膜電位の変化をもたらすことが知られている。この神経細胞応答の本質であるアクティブな膜伝導性を一切無視したモデルであるため、実際の神経細胞応答とは異なる特性を示すことから、その拡張モデルも多く提案されてきた。以下では、まず、基本となる積分発火モデルであるLeaky Integrate-and-Fireモデル(LIFモデル、と呼ばれる)を解説し、次にその拡張モデルとして代表的なものを紹介する。
 一方、神経細胞の細胞膜上に発現したタンパク質であるイオンチャネルが、その状態によってイオンの流出入を促す場合があり、膜電位の変化をもたらすことが知られている。この神経細胞応答の本質であるアクティブな膜伝導性を一切無視したモデルであるため、実際の神経細胞応答とは異なる特性を示すことから、その拡張モデルも多く提案されてきた。以下では、まず、基本となる積分発火モデルである[[Leaky Integrate-and-Fireモデル]]([[LIFモデル]]、と呼ばれる)を解説し、次にその拡張モデルとして代表的なものを紹介する。


[[ファイル:Kitano 積分発火モデルFig1.png|サムネイル|450px|'''図1. 積分発火モデルとMulti-timescale Adaptive Threshold (MAT)モデル(拡張された積分発火モデルを参照)の模式図'''
[[ファイル:Kitano 積分発火モデルFig1.png|サムネイル|450px|'''図1. 積分発火モデルとMulti-timescale Adaptive Threshold (MAT)モデル(拡張された積分発火モデルを参照)の模式図'''
24行目: 24行目:


==基本的な積分発火モデル ==
==基本的な積分発火モデル ==
 膜電位を<math>V</math>とし、細胞膜の膜容量を<math>C_m</math>、細胞膜(実際にはイオンチャンネル)を透過する電流 (膜電流) を<math>I_m</math>とすると、
 膜電位を<math>V</math>とし、細胞膜の[[膜容量]]を<math>C_m</math>、細胞膜(実際にはイオンチャンネル)を透過する電流 (膜電流) を<math>I_m</math>とすると、


::<math>C_m\frac{dV}{dt}=-I_m</math>
::<math>C_m\frac{dV}{dt}=-I_m</math>
34行目: 34行目:
のように書ける。
のように書ける。


 膜電流<math>I_m</math>は、細胞膜上に発現するイオンチャネルを透過する電流を表す。イオンチャネルは、典型的には10種類程度発現し、それぞれ異なる特性を有する。各イオンチャネルを透過する電流のコンダクタンス(あるいは、その逆数の抵抗)は、膜電位に依存して変化するアクティブな性質をもち、この性質によりパルス状の膜電位変化である活動電位が生成される。しかし、活動電位は、膜電位が閾値と呼ばれるレベルまで上昇すると、そこからさらに急速に上昇して正の電位に到達後、急速に下降して閾値以下の過分極したレベルまで戻る(リセットと呼ぶ)という定型の変化を示すことから、活動電位生成中の変化は省略し、リセット後から閾値到達までの変化のみを定式化する。膜電流としては、アクティブな伝導性を無視し、伝導性の時間に不変な成分を括り出したリーク電流のみを採用する。リーク電流は、時間に不変なコンダクタンスを<math>G_L</math>、この電流の反転電位を<math>E_L</math>とすると、
 膜電流<math>I_m</math>は、細胞膜上に発現するイオンチャネルを透過する電流を表す。イオンチャネルは、典型的には10種類程度発現し、それぞれ異なる特性を有する。各イオンチャネルを透過する電流のコンダクタンス(あるいは、その逆数の抵抗)は、膜電位に依存して変化するアクティブな性質をもち、この性質によりパルス状の膜電位変化である活動電位が生成される。しかし、活動電位は、膜電位が[[閾値]]と呼ばれるレベルまで上昇すると、そこからさらに急速に上昇して正の電位に到達後、急速に下降して閾値以下の過分極したレベルまで戻る(リセットと呼ぶ)という定型の変化を示すことから、活動電位生成中の変化は省略し、リセット後から閾値到達までの変化のみを定式化する。膜電流としては、アクティブな伝導性を無視し、伝導性の時間に不変な成分を括り出した[[リーク電流]]のみを採用する。リーク電流は、時間に不変なコンダクタンスを<math>G_L</math>、この電流の[[反転電位]]を<math>E_L</math>とすると、


::<math>I_m=G_L(V-E_L)</math>
::<math>I_m=G_L(V-E_L)</math>


と表すことができる。これに加え、膜電位が閾値<math>V_{th}</math>に到達した場合、その時刻に活動電位が発生したとみなし、膜電位をリセット電位<math>V_{reset}</math>にリセットするという処理を必要とする ('''図1A''')。従って、リーク電流を考慮したLeaky Integrate and Fireモデルは、
と表すことができる。これに加え、膜電位が閾値<math>V_{th}</math>に到達した場合、その時刻に活動電位が発生したとみなし、膜電位を[[リセット電位]]<math>V_{reset}</math>にリセットするという処理を必要とする ('''図1A''')。従って、リーク電流を考慮したLeaky Integrate and Fireモデルは、


::<math>
::<math>
67行目: 67行目:
::<math>F(V)=-G_L(V-E_L)\mbox{    }\cdots(4)</math>
::<math>F(V)=-G_L(V-E_L)\mbox{    }\cdots(4)</math>


という線形微分方程式<math>F(V)</math>が1次関数) である。しかし、神経細胞は非線形システムであり、Hodgkin-Huxleyモデルも非線形微分方程式である。このため、<math>F(V)</math>を非線形関数で表したモデルがいくつか提案されてきた。また、Hodgkin-Huxleyモデルから、早いチャネル変数を膜電位<math>V</math>の関数に置き換え、遅いチャネル変数を定数に置き換える近似により、非線形積分発火モデルを導出できる<ref name=Abbott1990>'''Abbott, L.F. & Kepler, T.B. (1990).'''<br>Model neurons: from Hodgkin-Huxley to Hopfield." In Statistical mechanics of neural networks (pp. 5-18). Springer, Berlin, Heidelberg.
という線形微分方程式<math>F(V)</math>が1次関数) である。しかし、神経細胞は非線形システムであり、[[Hodgkin-Huxleyモデル]]も非線形微分方程式である。このため、<math>F(V)</math>を非線形関数で表したモデルがいくつか提案されてきた。また、Hodgkin-Huxleyモデルから、早いチャネル変数を膜電位<math>V</math>の関数に置き換え、遅いチャネル変数を定数に置き換える近似により、非線形積分発火モデルを導出できる<ref name=Abbott1990>'''Abbott, L.F. & Kepler, T.B. (1990).'''<br>Model neurons: from Hodgkin-Huxley to Hopfield." In Statistical mechanics of neural networks (pp. 5-18). Springer, Berlin, Heidelberg.
[https://doi.org/10.1007/3540532676_37 PDF]</ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>。
[https://doi.org/10.1007/3540532676_37 PDF]</ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>。


 1つ目の拡張は、<math>F(V)</math>を2次関数<math>F(V)=\tfrac{G_L}{2\Delta_r}(V-V_r)^2</math>に拡張したQuadratic Integrate and Fire (QIF) モデルである。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>。Quadratic Integrate and Fireモデルには限られたタイプの発火パターンしか再現できないという問題があった。そこで、IzhikevichはQuadratic Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Izhikevich2003><pubmed>18244602</pubmed><br>MATLABコードが著者の [https://www.izhikevich.org/publications/spikes.htm ホームページ]にある。</ref>。
 1つ目の拡張は、<math>F(V)</math>を2次関数<math>F(V)=\tfrac{G_L}{2\Delta_r}(V-V_r)^2</math>に拡張した[[Quadratic Integrate and Fireモデル|Quadratic Integrate and Fire (QIF) モデル]]である。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>。Quadratic Integrate and Fireモデルには限られたタイプの発火パターンしか再現できないという問題があった。そこで、IzhikevichはQuadratic Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Izhikevich2003><pubmed>18244602</pubmed><br>MATLABコードが著者の [https://www.izhikevich.org/publications/spikes.htm ホームページ]にある。</ref>。


::<math>C_m\frac{dV}{dt}=0.04V^2+5V+140-U+I_{ext}\mbox{    }\cdots(5)</math>
::<math>C_m\frac{dV}{dt}=0.04V^2+5V+140-U+I_{ext}\mbox{    }\cdots(5)</math>
93行目: 93行目:
 以下、閾値の変動を取り入れたモデルを紹介する。
 以下、閾値の変動を取り入れたモデルを紹介する。


 まず、スパイクによって閾値が変動すると考えられる。閾値がスパイクによって変動するモデルとして、Multi-timescale Adaptive Threshold (MAT) モデル<ref name=Kobayashi2009><pubmed>19668702</pubmed>C および MATLABコードが著者の[http://www.hk.k.u-tokyo.ac.jp/r-koba/applications/pred_JP.html ホームページ]にある。</ref>を紹介する。Multi-timescale Adaptive Thresholdモデルの閾値<math>V_{th}(t)</math>は次の式で書ける。
 まず、スパイクによって閾値が変動すると考えられる。閾値がスパイクによって変動するモデルとして、[[Multi-timescale Adaptive Thresholdモデル|Multi-timescale Adaptive Threshold (MAT) モデル]]<ref name=Kobayashi2009><pubmed>19668702</pubmed>C および MATLABコードが著者の[http://www.hk.k.u-tokyo.ac.jp/r-koba/applications/pred_JP.html ホームページ]にある。</ref>を紹介する。Multi-timescale Adaptive Thresholdモデルの閾値<math>V_{th}(t)</math>は次の式で書ける。


::<math>V_{th}(t)=\omega+\sum_{j:t_j<t}H(t-t_j)\mbox{    }\cdots(8)</math>
::<math>V_{th}(t)=\omega+\sum_{j:t_j<t}H(t-t_j)\mbox{    }\cdots(8)</math>
::<math>H(t)=\alpha_1+r^{-t/\tau_1}+\alpha_2+r^{-t/\tau_2}\mbox{    }\cdots(9)</math>
::<math>H(t)=\alpha_1+r^{-t/\tau_1}+\alpha_2+r^{-t/\tau_2}\mbox{    }\cdots(9)</math>


ここで<math>t_j</math>は<math>j</math>番目のスパイク時刻であり、(8)式の和は時刻<math>t</math>までに起きたすべてのスパイクについて取る。また、<math>\omega</math>, <math>\alpha_1</math>, <math>\alpha_2</math>はモデルパラメータ、<math>\tau_1=10\mbox{ }[ms]</math>, <math>\tau_2=200\mbox{ }[ms]</math>は時定数である。Multi-timescale Adaptive Thresholdモデルは、膜電位が閾値に達したら、膜電位をリセットする代わりに閾値を上昇させるという点において積分発火モデルと異なる('''図1''')。このモデルは、わずか3つのパラメータで脳を構成する多様な発火パターンを再現する ('''図2''')。Multi-timescale Adaptive Thresholdモデルは、スパイクに着目した線形化近似を行うことで、Hodgikin-Huxleyモデルから導出することもできる<ref name=Kobayashi2016></ref>。この解析により、速い時定数<math>\thicksim 10\mbox{ }[ms]</math> は膜時定数、遅い時定数<math>\thicksim 200\mbox{ }[ms]</math>は遅いカリウムイオン電流 (Mタイプ電流K<sup>+</sup>電流やCa<sup>2+</sup>活性化K<sup>+</sup>電流) に対応することが示された<ref name=Kobayashi2016></ref>。また、Multi-timescale Adaptive Thresholdモデルではカーネル<math>H(t)</math>として2つの指数関数の和を仮定したが、<math>H(t)</math>として指数関数を仮定し、膜電位をリセットするモデルもある<ref name=Liu2001><pubmed>11316338</pubmed></ref><ref name=Jolivet2008><pubmed>18160135</pubmed></ref><ref name=Levakova2019><pubmed>31387478</pubmed></ref>。
ここで<math>t_j</math>は<math>j</math>番目のスパイク時刻であり、(8)式の和は時刻<math>t</math>までに起きたすべてのスパイクについて取る。また、<math>\omega</math>, <math>\alpha_1</math>, <math>\alpha_2</math>はモデルパラメータ、<math>\tau_1=10\mbox{ }[ms]</math>, <math>\tau_2=200\mbox{ }[ms]</math>は[[時定数]]である。Multi-timescale Adaptive Thresholdモデルは、膜電位が閾値に達したら、膜電位をリセットする代わりに閾値を上昇させるという点において積分発火モデルと異なる('''図1''')。このモデルは、わずか3つのパラメータで脳を構成する多様な発火パターンを再現する ('''図2''')。Multi-timescale Adaptive Thresholdモデルは、スパイクに着目した線形化近似を行うことで、Hodgikin-Huxleyモデルから導出することもできる<ref name=Kobayashi2016></ref>。この解析により、速い時定数<math>\thicksim 10\mbox{ }[ms]</math> は膜時定数、遅い時定数<math>\thicksim 200\mbox{ }[ms]</math>は[[遅いカリウムイオン電流]] ([[Mタイプ電流K+電流|Mタイプ電流K<sup>+</sup>電流]]や[[Ca2+活性化K+電流|Ca<sup>2+</sup>活性化K<sup>+</sup>電流]]) に対応することが示された<ref name=Kobayashi2016></ref>。また、Multi-timescale Adaptive Thresholdモデルではカーネル<math>H(t)</math>として2つの指数関数の和を仮定したが、<math>H(t)</math>として[[指数関数]]を仮定し、膜電位をリセットするモデルもある<ref name=Liu2001><pubmed>11316338</pubmed></ref><ref name=Jolivet2008><pubmed>18160135</pubmed></ref><ref name=Levakova2019><pubmed>31387478</pubmed></ref>。


 また、閾値は膜電位<math>V</math>やその微分<math>\tfrac{dv}{dt}</math>によって変動すると考えられる。Azouz とGray は''in vivo''膜電位データを分析し、閾値が膜電位の微分に依存することを示した<ref name=Azouz2000><pubmed>10859358</pubmed></ref>。また、膜電位の微分情報を活用することによって、Hodgikin-Huxleyモデルに対するスパイクの予測精度が向上することが示されている<ref name=Kobayashi2007><pubmed>17358202</pubmed></ref>。この結果は、Hodgikin-Huxleyモデルの閾値が膜電位の微分に依存することを示唆している。PlatkiewiczとBretteは、Hodgikin-Huxleyモデルの閾値は近似的に以下の式に従うことを示した<ref name=Platkiewicz2010><pubmed>20628619</pubmed></ref>。 
 また、閾値は膜電位<math>V</math>やその微分<math>\tfrac{dv}{dt}</math>によって変動すると考えられる。Azouz とGray は''in vivo''膜電位データを分析し、閾値が膜電位の微分に依存することを示した<ref name=Azouz2000><pubmed>10859358</pubmed></ref>。また、膜電位の微分情報を活用することによって、Hodgikin-Huxleyモデルに対するスパイクの予測精度が向上することが示されている<ref name=Kobayashi2007><pubmed>17358202</pubmed></ref>。この結果は、Hodgikin-Huxleyモデルの閾値が膜電位の微分に依存することを示唆している。PlatkiewiczとBretteは、Hodgikin-Huxleyモデルの閾値は近似的に以下の式に従うことを示した<ref name=Platkiewicz2010><pubmed>20628619</pubmed></ref>。 
109行目: 109行目:
::<math>V_{th}(t)=\omega+\sum_{j:t_j<t}H(t-t_j)+\beta\int\alpha(s)\frac{dV}{dT}(t-s)dS\mbox{    }\cdots(11)</math>
::<math>V_{th}(t)=\omega+\sum_{j:t_j<t}H(t-t_j)+\beta\int\alpha(s)\frac{dV}{dT}(t-s)dS\mbox{    }\cdots(11)</math>


ここで<math>H(t)</math>は式(9)で定義されるカーネル、<math>\alpha(S)=se^{-s/\tau V}\mbox{ }(\tau_V=5\mbox{ }[ms]</math>)はアルファ関数である。このモデルは4つのモデルパラメーター<math>\omega</math>, <math>\alpha_1</math>, <math>\alpha_2</math>, <math>\beta</math>を持つ。このモデルは、実験データのスパイクを高精度に予測でき、かつ、Izhikevichモデルと同様に多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Yamauchi2011></ref>。
ここで<math>H(t)</math>は式(9)で定義されるカーネル、<math>\alpha(S)=se^{-s/\tau V}\mbox{ }(\tau_V=5\mbox{ }[ms]</math>)はアルファ関数である。このモデルは4つのモデルパラメーター<math>\omega</math>, <math>\alpha_1</math>, <math>\alpha_2</math>, <math>\beta</math>を持つ。このモデルは、実験データのスパイクを高精度に予測でき、かつ、[[Izhikevichモデル]]と同様に多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Yamauchi2011></ref>。


===Spike Response Model===
===Spike Response Model===
116行目: 116行目:
::<math>V(t)=V_{reset}e^{-t/\tau{_m}}+\int_0^t I(t-s)e^{-s/\tau{_m}}ds\mbox{    }\cdots(12)</math>
::<math>V(t)=V_{reset}e^{-t/\tau{_m}}+\int_0^t I(t-s)e^{-s/\tau{_m}}ds\mbox{    }\cdots(12)</math>


と書ける。表記を単純にするため、<math>E_L=0</math>とした。式(12) を以下のように拡張したモデルはSpike Response Model (SRM) と呼ばれている<ref name=Gerstner2002>'''Gerstner, W. & Kistler, W.M. (2002).'''<br>Spiking neuron models: Single neurons, populations, plasticity., Cambridge: Cambridge University Press. [https://doi.org/10.1017/CBO9780511815706 PDF] </ref> 。
と書ける。表記を単純にするため、<math>E_L=0</math>とした。式(12) を以下のように拡張したモデルは[[Spike Response Model]] (SRM)と呼ばれている<ref name=Gerstner2002>'''Gerstner, W. & Kistler, W.M. (2002).'''<br>Spiking neuron models: Single neurons, populations, plasticity., Cambridge: Cambridge University Press. [https://doi.org/10.1017/CBO9780511815706 PDF] </ref> 。


::<math>V(t)=\eta(t)+\int_0^t \kappa(s)I(t-s)ds\mbox{    }\cdots(11)</math>
::<math>V(t)=\eta(t)+\int_0^t \kappa(s)I(t-s)ds\mbox{    }\cdots(11)</math>


<math>\eta(t)</math>, <math>\kappa(s)</math>はカーネルと呼ばれる関数である。カーネルがどちらも同じ時定数の指数関数であれば積分発火モデルとなる。Spike Response Modelは Hodgikin-Huxleyモデルで観察されている共鳴特性 (特定の周波数の入力に発火しやすい性質) を再現できる。共鳴特性を再現するモデルとしてResonate-and-Fireモデル <ref name=Izhikevich2001><pubmed>11665779</pubmed></ref>がよく知られているが、このモデルもSpike Response Modelの特殊な場合となる。
<math>\eta(t)</math>, <math>\kappa(s)</math>はカーネルと呼ばれる関数である。カーネルがどちらも同じ時定数の指数関数であれば積分発火モデルとなる。Spike Response Modelは Hodgikin-Huxleyモデルで観察されている共鳴特性 (特定の周波数の入力に発火しやすい性質) を再現できる。共鳴特性を再現するモデルとして[[Resonate-and-Fireモデル]]<ref name=Izhikevich2001><pubmed>11665779</pubmed></ref>がよく知られているが、このモデルもSpike Response Modelの特殊な場合となる。


==神経細胞モデル間の比較==
==神経細胞モデル間の比較==
 これまで、積分発火モデルとその様々な拡張モデルについて紹介を行った。本節では、4つの神経細胞モデル (積分発火モデル、Izhikevichモデル、Multi-timescale Adaptive Thresholdモデル、Hodgikin-Huxleyモデル) について比較を行い、モデルの特徴を整理する('''表''')。
 これまで、積分発火モデルとその様々な拡張モデルについて紹介を行った。本節では、4つの神経細胞モデル (積分発火モデル、[[Izhikevichモデル]]、Multi-timescale Adaptive Thresholdモデル、Hodgikin-Huxleyモデル) について比較を行い、モデルの特徴を整理する('''表''')。


 まず、モデルの再現性、つまり、数理モデルが実際の神経細胞の発火パターンを再現できるかどうかについて考えよう。モデルの再現性として、
 まず、モデルの再現性、つまり、数理モデルが実際の神経細胞の発火パターンを再現できるかどうかについて考えよう。モデルの再現性として、
130行目: 130行目:
* 実験データを正確に予測できる (定量的再現性)
* 実験データを正確に予測できる (定量的再現性)


 の2つがある。積分発火モデルは、単純化されすぎているため、限られたタイプ (Fast Spiking細胞) の発火パターンしか再現できない。Izhikevichモデル、Multi-timescale Adaptive Thresholdモデルは、多様な神経細胞のさまざまな発火パターンを定性的に再現できる。Multi-timescale Adaptive Thresholdモデルはスパイク予測の国際コンペで優勝するなど実験データを高精度に予測できる<ref name=Kobayashi2009></ref><ref name=Gerstner2009><pubmed>19833951</pubmed></ref>。Izhikevichモデルは分岐点近傍のモデルであるため、定量的予測には不向きである<ref name=Rossant2011><pubmed>21415925</pubmed></ref>。Hodgikin-Huxleyモデルは、さまざまな発火パターンを定性的に再現できるものの、異なる細胞タイプをシミュレーションするにはイオン電流を調整する必要がある。この調整には専門知識と経験を必要とする。また、個別の実験データにフィットしたり予測したりすることは困難であることが多い。
 の2つがある。積分発火モデルは、単純化されすぎているため、限られたタイプ ([[Fast Spiking細胞]]) の発火パターンしか再現できない。Izhikevichモデル、Multi-timescale Adaptive Thresholdモデルは、多様な神経細胞のさまざまな発火パターンを定性的に再現できる。Multi-timescale Adaptive Thresholdモデルはスパイク予測の国際コンペで優勝するなど実験データを高精度に予測できる<ref name=Kobayashi2009></ref><ref name=Gerstner2009><pubmed>19833951</pubmed></ref>。Izhikevichモデルは分岐点近傍のモデルであるため、定量的予測には不向きである<ref name=Rossant2011><pubmed>21415925</pubmed></ref>。Hodgikin-Huxleyモデルは、さまざまな発火パターンを定性的に再現できるものの、異なる細胞タイプをシミュレーションするにはイオン電流を調整する必要がある。この調整には専門知識と経験を必要とする。また、個別の実験データにフィットしたり予測したりすることは困難であることが多い。


 次に、これらのモデルを脳のシミュレーション (数値計算) に使うことを考えよう。
 次に、これらのモデルを脳のシミュレーション (数値計算) に使うことを考えよう。
138行目: 138行目:
 また、神経回路の理論的解析を行うためにはモデルがシンプルなことが望ましい。そのため、理論研究では積分発火モデルが使われることが多い。Multi-timescale Adaptive Thresholdモデルの閾値変動は複雑であるものの、方程式自体は線形なのでそれほど困難ではないと予想される。IzhikevichモデルとHodgikin-Huxleyモデルは非線形微分方程式であるため、解析は困難である。
 また、神経回路の理論的解析を行うためにはモデルがシンプルなことが望ましい。そのため、理論研究では積分発火モデルが使われることが多い。Multi-timescale Adaptive Thresholdモデルの閾値変動は複雑であるものの、方程式自体は線形なのでそれほど困難ではないと予想される。IzhikevichモデルとHodgikin-Huxleyモデルは非線形微分方程式であるため、解析は困難である。


 最後に、モデルパラメータの解釈性について考えよう。Hodgikin-Huxleyモデルは、全てのパラメータがイオンチャネルと対応しているため、パラメータの解釈を行うことが容易である。その一方、積分発火モデルやIzhikevichモデルは単純化されすぎているため、パラメータの生理学的意味を解釈することはできない。このため、積分発火モデルやその拡張モデルは現象論的モデルと呼ばれることもある。Multi-timescale Adaptive Thresholdモデルのパラメータは、複数のイオン電流の効果が合わさったものに対応している。このため、パラメータから遅いカリウム電流の有無などを解釈できるものの、イオン電流の詳細については解釈できない。
 最後に、モデルパラメータの解釈性について考えよう。Hodgikin-Huxleyモデルは、全てのパラメータがイオンチャネルと対応しているため、パラメータの解釈を行うことが容易である。その一方、積分発火モデルやIzhikevichモデルは単純化されすぎているため、パラメータの生理学的意味を解釈することはできない。このため、積分発火モデルやその拡張モデルは現象論的モデルと呼ばれることもある。Multi-timescale Adaptive Thresholdモデルのパラメータは、複数のイオン電流の効果が合わさったものに対応している。このため、パラメータから[[遅いカリウム電流]]の有無などを解釈できるものの、イオン電流の詳細については解釈できない。


{| class="wikitable" style="text-align: center
{| class="wikitable" style="text-align: center

案内メニュー