16,054
回編集
細 (→構造と学習原理) |
細 (→オンライン型アルゴリズム) |
||
33行目: | 33行目: | ||
===オンライン型アルゴリズム=== | ===オンライン型アルゴリズム=== | ||
自己組織化マップの学習アルゴリズムは、競合・協調・適合という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref> [2]。時刻 tにおける入力データをx(t)とすれば、それにもっとも近い参照ベクトルを持つニューロンc(t)が時刻tの勝者となる: | 自己組織化マップの学習アルゴリズムは、競合・協調・適合という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref> [2]。時刻 tにおける入力データをx(t)とすれば、それにもっとも近い参照ベクトルを持つニューロンc(t)が時刻tの勝者となる: | ||
c(t) = arg | |||
::<math>c(t)=arg\ m\underset{i}in||x(t)-mi(t)||.</math> | |||
これが競合プロセスである。 | これが競合プロセスである。 | ||
一方、各ニューロンが学習する量はマップ空間上で勝者<math>c(t)</math>に近いニューロンほど大きい。この配分は近傍関数<math>h(\cdot,\cdot)</math>で決まる。近傍関数は勝者ニューロン<math>c</math>に対してニューロン<math>i</math>がどれくらいデータを学習するかを表し、しばしばガウス関数が用いられる: | |||
::<math>h_{ci} =h(\mathbf{z}_c,\mathbf{z}_i)=exp\left [-\frac{1}{2\rho^2(t)}||\mathbf{z}_c-\mathbf{z}_i||^2\right ]</math> | |||
ここで<math>\mathbf{z}_c</math>, <math>\mathbf{z}_i</math>はマップ空間上でのニューロンc,iの座標であり、σは近傍の広さを決めるパラメータである。これが協調プロセスである。 | |||
最後に、入力x(t)との誤差が小さくなるように各ニューロンの参照ベクトルを更新する: mi(t + 1) := mi(t) + εhci (x(t) − mi(t)). | 最後に、入力x(t)との誤差が小さくなるように各ニューロンの参照ベクトルを更新する: mi(t + 1) := mi(t) + εhci (x(t) − mi(t)). |