「自己組織化マップ」の版間の差分

ナビゲーションに移動 検索に移動
94行目: 94行目:


これが競合プロセスである。
これが競合プロセスである。
一方、各ニューロンが学習する量はマップ空間上で勝者<math>c(t)</math>に近いニューロンほど大きい。この配分は近傍関数<math>h(\cdot,\cdot)</math>で決まる。近傍関数は勝者ニューロン<math>c</math>に対してニューロン<math>i</math>がどれくらいデータを学習するかを表し、しばしばガウス関数が用いられる:
 
 一方、各ニューロンが学習する量はマップ空間上で勝者<math>c(t)</math>に近いニューロンほど大きい。この配分は近傍関数<math>h(\cdot,\cdot)</math>で決まる。近傍関数は勝者ニューロン<math>c</math>に対してニューロン<math>i</math>がどれくらいデータを学習するかを表し、しばしばガウス関数が用いられる:


::<math>h_{ci} =h(\mathbf{z}_c,\mathbf{z}_i)=exp\left [-\frac{1}{2\rho^2(t)}||\mathbf{z}_c-\mathbf{z}_i||^2\right ]</math>
::<math>h_{ci} =h(\mathbf{z}_c,\mathbf{z}_i)=exp\left [-\frac{1}{2\rho^2(t)}||\mathbf{z}_c-\mathbf{z}_i||^2\right ]</math>
106行目: 107行目:
 ここで<math>\epsilon</math>は正の小さな定数である。これを適合プロセスである。
 ここで<math>\epsilon</math>は正の小さな定数である。これを適合プロセスである。


 このように入力<math>x(t)</math>を変えながら競合・協調・適合プロセスを繰り返すのがオンライン型自己組織化マップのアルゴリズムである。また近傍の広さ<math>\rho</math>は学習の初期に広くしておき、学習が進むに連れて小さくしていく。このオンライン型アルゴリズムは、他の数理モデルや現実の脳との関連性を考えるうえで有用である。しかしオンライン型は学習時間がかかる上に計算結果が不安定であり、実データ解析には次に述べるバッチ型アルゴリズムを用いるべきであるとKohone自身も指摘している<ref name=Kohonen2013><pubmed>23067803</pubmed></ref>[6]。
 このように入力<math>x(t)</math>を変えながら競合・協調・適合プロセスを繰り返すのがオンライン型自己組織化マップのアルゴリズムである。また近傍の広さ<math>\rho</math>は学習の初期に広くしておき、学習が進むに連れて小さくしていく。
 
 このオンライン型アルゴリズムは、他の数理モデルや現実の脳との関連性を考えるうえで有用である。しかしオンライン型は学習時間がかかる上に計算結果が不安定であり、実データ解析には次に述べるバッチ型アルゴリズムを用いるべきであるとKohone自身も指摘している<ref name=Kohonen2013><pubmed>23067803</pubmed></ref>[6]。


===バッチ型アルゴリズム===
===バッチ型アルゴリズム===

案内メニュー