「自己組織化マップ」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
 
5行目: 5行目:
担当編集委員:[https://researchmap.jp/wagaKBR_ 我妻 広明](九州工業大学大学院 生命体工学研究科 人間知能システム工学専攻)<br>
担当編集委員:[https://researchmap.jp/wagaKBR_ 我妻 広明](九州工業大学大学院 生命体工学研究科 人間知能システム工学専攻)<br>
</div>
</div>
英語 Self-Organizing Map, Kohonen map <br>
英:self-organizing map, Kohonen map <br>
略称 SOM<br>
英略称:SOM<br>
同義語 自己組織化写像<br>
同義語:自己組織化写像<br>


{{box|text= 自己組織化マップはT. Kohonenによって提案された教師なしニューラルネットの一種である。自己組織化マップはもともと大脳の機能局在の自己組織的な分化現象を説明する数理モデルに由来する。しかし、データ解析へ応用するため、ニューロン間の結合やダイナミクスが簡約化され、計算の効率化が図られている。自己組織化マップの学習原理はwinner-take-allによる競合学習とニューロンの空間的配置に基づく近傍学習の組み合わせである。自己組織化マップはデータの次元削減や可視化を行うニューラルネットであり、高次元データの可視化やデータマイニングなどの目的で幅広い分野で利用されてきた。}}
{{box|text= 自己組織化マップはT. Kohonenによって提案された教師なしニューラルネットの一種である。自己組織化マップはもともと大脳の機能局在の自己組織的な分化現象を説明する数理モデルに由来する。しかし、データ解析へ応用するため、ニューロン間の結合やダイナミクスが簡約化され、計算の効率化が図られている。自己組織化マップの学習原理はwinner-take-allによる競合学習とニューロンの空間的配置に基づく近傍学習の組み合わせである。自己組織化マップはデータの次元削減や可視化を行うニューラルネットであり、高次元データの可視化やデータマイニングなどの目的で幅広い分野で利用されてきた。}}
14行目: 14行目:
 [[大脳皮質]]には[[機能局在]]性があり、機能の類似する[[ニューロン]]は[[皮質]]上で隣接して分布することが知られる。また[[感覚]]系・[[運動]]系では身体的な空間的トポロジーが保存される[[トポグラフィックマッピング]]や[[体部位再現]]が知られる。これらの空間的な機能分化が自己組織的に生じる原理について、形式ニューロンを用いた数理モデルの研究が行われた。たとえばMarsburg<ref name=vonderMalsburg1973><pubmed>4786750</pubmed></ref>やAmari<ref name=Amari1980><pubmed>6246997</pubmed></ref>は外界からの刺激によりニューロンの機能局在と位相的な配置が自己組織化することを示した。
 [[大脳皮質]]には[[機能局在]]性があり、機能の類似する[[ニューロン]]は[[皮質]]上で隣接して分布することが知られる。また[[感覚]]系・[[運動]]系では身体的な空間的トポロジーが保存される[[トポグラフィックマッピング]]や[[体部位再現]]が知られる。これらの空間的な機能分化が自己組織的に生じる原理について、形式ニューロンを用いた数理モデルの研究が行われた。たとえばMarsburg<ref name=vonderMalsburg1973><pubmed>4786750</pubmed></ref>やAmari<ref name=Amari1980><pubmed>6246997</pubmed></ref>は外界からの刺激によりニューロンの機能局在と位相的な配置が自己組織化することを示した。


 このような空間的機能分化の自己組織化は2種に分けられる<ref name=Kohonen2006><pubmed>16774731</pubmed></ref>[5]
 このような空間的機能分化の自己組織化は2種に分けられる<ref name=Kohonen2006><pubmed>16774731</pubmed></ref>。


 タイプ1は[[レチノトピー]]を典型例とするトポグラフィックマッピングであり、入力が類似するニューロンが皮質上で近くに配置される自己組織化である。
 タイプ1は[[レチノトピー]]を典型例とするトポグラフィックマッピングであり、入力が類似するニューロンが皮質上で近くに配置される自己組織化である。
43行目: 43行目:


===オンライン型アルゴリズム===
===オンライン型アルゴリズム===
 自己組織化マップの学習アルゴリズムは、[[競合]]・[[協調]]・[[適合]]という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref>[2]。時刻<math>t</math>における入力データを<math>x(t)</math>とすれば、それにもっとも近い参照ベクトルを持つニューロン<math>c(t)</math>が時刻<math>t</math>の勝者となる:
 自己組織化マップの学習アルゴリズムは、[[競合]]・[[協調]]・[[適合]]という3プロセスの繰り返し計算である<ref name=Haykin1998>'''Haykin, S. (1998).'''<br>Neural Networks - A Comprehensive Foundation (2nd ed). Prentice Hall.</ref>。時刻<math>t</math>における入力データを<math>x(t)</math>とすれば、それにもっとも近い参照ベクトルを持つニューロン<math>c(t)</math>が時刻<math>t</math>の勝者となる:


::<math>c(t)=arg\ m\underset{i}in||\mathbf{x}_{(t)}-\mathbf{m}_i(t)||</math>
::<math>c(t)=arg\ m\underset{i}in||\mathbf{x}_{(t)}-\mathbf{m}_i(t)||</math>
90行目: 90行目:
 自己組織化マップは高次元データを低次元に射影して可視化するため、[[次元削減法]]の一種とみることができる。したがって高次元データの可視化やデータマイニングのみを目的とする場合は、他の次元削減法、たとえばt-SNE<ref name=VanDerMaaten2008>'''L. Van Der Maaten and G. Hinton. (2008).'''<br>Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2625, 2008.</ref>、Isomap<ref name=Tenenbaum2000><pubmed>11125149</pubmed></ref>、Locally Linear Embedding <ref name=Roweis2000><pubmed>11125150</pubmed></ref>などでも代用できる。これらの手法と自己組織化マップの大きく異る点は、学習終了後、新規の入力データに対してもマップ上へ射影できること、および新規データの予測や生成ができるという点である。
 自己組織化マップは高次元データを低次元に射影して可視化するため、[[次元削減法]]の一種とみることができる。したがって高次元データの可視化やデータマイニングのみを目的とする場合は、他の次元削減法、たとえばt-SNE<ref name=VanDerMaaten2008>'''L. Van Der Maaten and G. Hinton. (2008).'''<br>Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2625, 2008.</ref>、Isomap<ref name=Tenenbaum2000><pubmed>11125149</pubmed></ref>、Locally Linear Embedding <ref name=Roweis2000><pubmed>11125150</pubmed></ref>などでも代用できる。これらの手法と自己組織化マップの大きく異る点は、学習終了後、新規の入力データに対してもマップ上へ射影できること、および新規データの予測や生成ができるという点である。


 新規データの射影・予測・生成も含めた自己組織化マップと等価な手法として、[[ガウス過程潜在変数モデル]](Gaussianprocess latent variable model, GPLVM)がある<ref name=Lawrence2004>'''N.D. Lawrence. (2004).''' Gaussian process latent variable models for visualisation of high dimensional data.</ref>。ガウス過程潜在変数モデルは[[ベイズ推論]]に基づくため柔軟な拡張が可能である。また[[教師なしカーネル回帰]](Unsupervisedkernelregression, UKR) は自己組織化マップと同じ目的関数を用いており、自己組織化マップの直接的な発展形と見ることができる<ref name=Meinicke2005><pubmed>16173183</pubmed></ref>[8]。マップ空間を離散化する自己組織化マップと異なり、ガウス過程潜在変数モデルと教師なしカーネル回帰は低次元空間を連続空間のまま扱える。また可視化を目的としないのであれば、[[変分オートエンコーダ]](Variational auto-encoder, VAE)も自己組織化マップと同じ機能を持つ。現在の[[機械学習]]・[[AI]]の分野では自己組織化マップに代わってこれらの手法、とりわけガウス過程潜在変数モデルと変分オートエンコーダが広く使われている。
 新規データの射影・予測・生成も含めた自己組織化マップと等価な手法として、[[ガウス過程潜在変数モデル]](Gaussianprocess latent variable model, GPLVM)がある<ref name=Lawrence2004>'''N.D. Lawrence. (2004).''' Gaussian process latent variable models for visualisation of high dimensional data.</ref>。ガウス過程潜在変数モデルは[[ベイズ推論]]に基づくため柔軟な拡張が可能である。また[[教師なしカーネル回帰]](Unsupervisedkernelregression, UKR) は自己組織化マップと同じ目的関数を用いており、自己組織化マップの直接的な発展形と見ることができる<ref name=Meinicke2005><pubmed>16173183</pubmed></ref>。マップ空間を離散化する自己組織化マップと異なり、ガウス過程潜在変数モデルと教師なしカーネル回帰は低次元空間を連続空間のまま扱える。また可視化を目的としないのであれば、[[変分オートエンコーダ]](Variational auto-encoder, VAE)も自己組織化マップと同じ機能を持つ。現在の[[機械学習]]・[[AI]]の分野では自己組織化マップに代わってこれらの手法、とりわけガウス過程潜在変数モデルと変分オートエンコーダが広く使われている。


==参考文献==
==参考文献==
<references />
<references />

案内メニュー