「Na-K-2Cl共輸送体」の版間の差分

ナビゲーションに移動 検索に移動
34行目: 34行目:


==機能==
==機能==
 Slc12に属する分子は、Na<sup>+</sup>-K<sup>+</sup>-ATPaseによって生じるNa<sup>+</sup>、K<sup>+</sup>の濃度勾配を利用してCl<sup>-</sup>の移動を行うシンポーターであり、その中でNKCCは1つのNa<sup>+</sup>、1つのK<sup>+</sup>、2つのCl<sup>-</sup>を同時に同方向に輸送する。NKCC1を介するCl<sup>-</sup>の取り込みとそれに伴う水分の流入は細胞の高張ストレスに対する細胞容積調節の主因子となっている。腎尿細管(NKCC2優位)や唾液腺分泌上皮など極性のある細胞では一面に局在することにより、Na<sup>+</sup>やCl<sup>-</sup>等のイオンを一方向行に移行し、Na<sup>+</sup>の再吸収や分泌液の生成に作用する<ref name=Khalafalla2020><pubmed>32231563</pubmed></ref><ref name=MacAulay2020><pubmed>32870507</pubmed></ref> 。  
 Slc12に属する分子は、Na<sup>+</sup>-K<sup>+</sup>-ATPaseによって生じるNa<sup>+</sup>、K<sup>+</sup>の濃度勾配を利用してCl<sup>-</sup>の移動を行う共輸送体(シンポーター)であり、その中でNKCCは1つのNa<sup>+</sup>、1つのK<sup>+</sup>、2つのCl<sup>-</sup>を同時に同方向に輸送する。NKCC1を介するCl<sup>-</sup>の取り込みとそれに伴う水分の流入は細胞の高張ストレスに対する細胞容積調節の主因子となっている。腎尿細管(NKCC2優位)や[[唾液腺]]分泌上皮など極性のある細胞では一面に局在することにより、Na<sup>+</sup>やCl<sup>-</sup>等のイオンを一方向行に移行し、Na<sup>+</sup>の再吸収や分泌液の生成に作用する<ref name=Khalafalla2020><pubmed>32231563</pubmed></ref><ref name=MacAulay2020><pubmed>32870507</pubmed></ref> 。  
[['''図3. 腎尿細管におけるNKCC2の局在''')<br>
[['''図3. 腎尿細管におけるNKCC2の局在''')<br>
腎尿細管ではNKCC2は尿管側に局在し、尿管内の Na<sup>+</sup>、K<sup>+</sup>、2Cl<sup>-</sup> を細胞内に流入させる。K<sup>+</sup>はROMKを介して再び尿管側へ、Na<sup>+</sup>とCl<sup>-</sup>はそれぞれCl<sup>-</sup>チャネル(ClC-Kb)とNa<sup>+</sup>/K<sup>+</sup>-ATPaseを介して血管内に輸送される。<br>
腎尿細管ではNKCC2は尿管側に局在し、尿管内の Na<sup>+</sup>、K<sup>+</sup>、2Cl<sup>-</sup> を細胞内に流入させる。K<sup>+</sup>は[[ROMK]]を介して再び尿管側へ、Na<sup>+</sup>とCl<sup>-</sup>はそれぞれ[[塩素チャネル|Cl<sup>-</sup>チャネル]]([[ClC-Kb]])と[[Na+/K+-ATPase|Na<sup>+</sup>/K<sup>+</sup>-ATPase]]を介して[[血管]]内に輸送される。<br>
文献<ref name=Devuyst2015><pubmed>26579681</pubmed></ref>を改変]]
文献<ref name=Devuyst2015><pubmed>26579681</pubmed></ref>を改変]]


 神経細胞においては、神経特異的KCC2と協働し細胞内Cl<sup>-</sup>濃度の調節に関与する。上述のようにNKCC1の発現レベルの変化については統一されていないが、KCC2は発達と共に発現レベルが上昇することが知られている<ref name=Rivera1999><pubmed>9930699</pubmed></ref> 。このため、KCCはCl<sup>-</sup>を細胞外にくみ出す活性を持つが、神経細胞では発達につれてKCC2の発現レベルが上昇し、KCC活性がCl<sup>-</sup>を流入させるNKCC活性を上回り、細胞内Cl<sup>-</sup>濃度は低下する。神経細胞に発現するGABA<sub>A</sub>受容体やグリシン受容体は陰イオンチャネルであり、活性化すると生理的条件下ではCl<sup>-</sup>やHCO<sub>3</sub><sup>-</sup>など陰イオンを透過する。細胞内外の陰イオンではCl<sup>-</sup>が最も多く、Cl<sup>-</sup>はHCO<sub>3</sub><sup>-</sup>より透過性が高いため(GABA<sub>A</sub>受容体ではP<small>HCO<sub>3</sub><sup>-</sup></small>/P<small>Cl<sup>-</sup></small>=~0.2<ref name=Kaila1994><pubmed>7522334</pubmed></ref> )、Cl<sup>-</sup>が優位に透過することになるが、その場合、膜電位変化はCl<sup>-</sup>の平衡電位に近づくように変化する。平衡電位はおおむね細胞内外の当該イオンの濃度からネルンストの式から計算される。
 [[神経細胞]]においては、神経特異的[[KCC2]]と協働し細胞内Cl<sup>-</sup>濃度の調節に関与する。上述のようにNKCC1の発現レベルの変化については統一されていないが、KCC2は発達と共に発現レベルが上昇することが知られている<ref name=Rivera1999><pubmed>9930699</pubmed></ref> 。このため、KCCはCl<sup>-</sup>を細胞外にくみ出す活性を持つが、神経細胞では発達につれてKCC2の発現レベルが上昇し、KCC活性がCl<sup>-</sup>を流入させるNKCC活性を上回り、細胞内Cl<sup>-</sup>濃度は低下する。神経細胞に発現する[[GABAA受容体|GABA<sub>A</sub>受容体]]や[[グリシン受容体]]は陰イオンチャネルであり、活性化すると生理的条件下ではCl<sup>-</sup>やHCO<sub>3</sub><sup>-</sup>など陰イオンを透過する。細胞内外の陰イオンではCl<sup>-</sup>が最も多く、Cl<sup>-</sup>はHCO<sub>3</sub><sup>-</sup>より透過性が高いため(GABA<sub>A</sub>受容体ではP<small>HCO<sub>3</sub><sup>-</sup></small>/P<small>Cl<sup>-</sup></small>=~0.2<ref name=Kaila1994><pubmed>7522334</pubmed></ref> )、Cl<sup>-</sup>が優位に透過することになるが、その場合、膜電位変化はCl<sup>-</sup>の[[平衡電位]]に近づくように変化する。平衡電位はおおむね細胞内外の当該イオンの濃度から[[ネルンストの式]]から計算される。


<math>
<math>
47行目: 47行目:
</math>
</math>


E: 平衡電位、R: 気体定数、T: 温度(K)、F: ファラデー定数、z: イオンの価数、[ion]<sub>out</sub>: 細胞外イオン濃度、[ion]<sub>in</sub>: 細胞内イオン濃度
E:[[平衡電位]]、R:[[気体定数]]、T: 温度(K)、F:[[ファラデー定数]]、z: イオンの価数、[ion]<sub>out</sub>: 細胞外イオン濃度、[ion]<sub>in</sub>: 細胞内イオン濃度


 電気生理学的に平衡電位を測定することによりネルンストの式を用い、該当イオンの細胞内濃度を計算することができる。例として、NKCC1が検出できる生後1-3日のラット脳の皮質板(cortical plate)の[Cl<sup>-</sup>]inは約30 mMであるが、NKCC1が検出感度以下になる生後11-20日の大脳皮質II/III層の神経細胞の[Cl<sup>-</sup>]inは約9 mMであった<ref name=Yamada2004><pubmed>15090604</pubmed></ref> 。
 電気生理学的に平衡電位を測定することによりネルンストの式を用い、該当イオンの細胞内濃度を計算することができる。例として、NKCC1が検出できる生後1-3日の[[ラット]]脳の[[皮質板]](cortical plate)の[Cl<sup>-</sup>]inは約30 mMであるが、NKCC1が検出感度以下になる生後11-20日の[[大脳皮質]]II/III層の神経細胞の[Cl<sup>-</sup>]inは約9 mMであった<ref name=Yamada2004><pubmed>15090604</pubmed></ref> 。


 このようにKCC2が十分発現している細胞では[Cl<sup>-</sup>]inが減少することで、GABA<sub>A</sub>受容体やグリシン受容体が活性化されると、細胞内イオンは細胞内へ流入し、過分極を引き起こすため、これらのリガンドは抑制性伝達物質として作用する。
 このようにKCC2が十分発現している細胞では[Cl<sup>-</sup>]inが減少することで、GABA<sub>A</sub>受容体やグリシン受容体が活性化されると、細胞内イオンは細胞内へ流入し、[[過分極]]を引き起こすため、これらのリガンドは[[抑制性伝達物質]]として作用する。
   
   
 NKCC1が優位な未熟な神経細胞ではGABA<sub>A</sub>受容体の活性化により細胞内のCl<sup>-</sup>が流出し脱分極を起こす。成長につれてKCC2の発現が上昇し[Cl<sup>-</sup>]inが低下するとGABA<sub>A</sub>受容体の活性化は細胞内へのCl<sup>-</sup>の流入を起こし過分極する<ref name=Andrews2020><pubmed>33266310</pubmed></ref> 。
 NKCC1が優位な未熟な神経細胞ではGABA<sub>A</sub>受容体の活性化により細胞内のCl<sup>-</sup>が流出し[[脱分極]]を起こす。成長につれてKCC2の発現が上昇し[Cl<sup>-</sup>]inが低下するとGABA<sub>A</sub>受容体の活性化は細胞内へのCl<sup>-</sup>の流入を起こし過分極する<ref name=Andrews2020><pubmed>33266310</pubmed></ref> 。


==疾患との関わり==
==疾患との関わり==

案内メニュー