131
回編集
Takeshisakurai (トーク | 投稿記録) 細編集の要約なし |
Takeshisakurai (トーク | 投稿記録) 細編集の要約なし |
||
3行目: | 3行目: | ||
ターゲット認識については主に神経発生における2つの過程で起こる可能性があるが、ここでは主にシナプス形成におけるターゲット認識を例にその概念を説明し、アクソンガイダンスにおける中間ターゲットの認識については触れない(これについてはアクソンガイダンスの項及び、ガイドポスト細胞の項を参照のこと)。 | ターゲット認識については主に神経発生における2つの過程で起こる可能性があるが、ここでは主にシナプス形成におけるターゲット認識を例にその概念を説明し、アクソンガイダンスにおける中間ターゲットの認識については触れない(これについてはアクソンガイダンスの項及び、ガイドポスト細胞の項を参照のこと)。 | ||
正常に脳が機能するにはそれを支える神経細胞群がシナプス結合によって回路を形成し、回路に入力してきた情報を的確に処理し、出力に変える必要がある。こういった神経回路は脳内のワイヤリングの過程により形成されるが、そのワイヤリングにおいて神経回路が「正しく」形成されるにはシナプス形成の過程で特異的なターゲット認識が行われる必要がある。そのためには神経細胞のアクソン(例えば延髄の下オリーブ核の神経細胞の軸索である登上線維)が正しい脳内の領域(小脳)に到着する必要があり(途中、延髄で正中線を越えて対側にはいり、その後、背外側の縁を上行し、小脳脚を経て)、その領域内(小脳皮質)にある神経細胞の中から正しい神経細胞(プルキニエ細胞)を認識し、その細胞上の正しい細胞内のコンパートメント(デンドライトの一部)にシナプスを形成する必要がある。また、この場合、ある線維とある細胞がランダムではなく特異的な結合を果たし、特異的な情報を(トポグラフィックカルな情報)伝達しなければならない(そのうえ一本の登上繊維は1つのプルキニエ細胞と結合し、幾つものプルキニエ細胞とは結合しない)(図1)。このためには、これらのそれぞれの過程で特異的なターゲット認識を行う認識分子(recognition molecule)が関与していると考えられる。 [[Image:辞典01.jpg|thumb|center|図1 登上線維の小脳への投射]] | 正常に脳が機能するにはそれを支える神経細胞群がシナプス結合によって回路を形成し、回路に入力してきた情報を的確に処理し、出力に変える必要がある。こういった神経回路は脳内のワイヤリングの過程により形成されるが、そのワイヤリングにおいて神経回路が「正しく」形成されるにはシナプス形成の過程で特異的なターゲット認識が行われる必要がある。そのためには神経細胞のアクソン(例えば延髄の下オリーブ核の神経細胞の軸索である登上線維)が正しい脳内の領域(小脳)に到着する必要があり(途中、延髄で正中線を越えて対側にはいり、その後、背外側の縁を上行し、小脳脚を経て)、その領域内(小脳皮質)にある神経細胞の中から正しい神経細胞(プルキニエ細胞)を認識し、その細胞上の正しい細胞内のコンパートメント(デンドライトの一部)にシナプスを形成する必要がある。また、この場合、ある線維とある細胞がランダムではなく特異的な結合を果たし、特異的な情報を(トポグラフィックカルな情報)伝達しなければならない(そのうえ一本の登上繊維は1つのプルキニエ細胞と結合し、幾つものプルキニエ細胞とは結合しない)(図1)。このためには、これらのそれぞれの過程で特異的なターゲット認識を行う認識分子(recognition molecule)が関与していると考えられる。 [[Image:辞典01.jpg|thumb|center|図1 登上線維の小脳への投射]]図1の説明 延髄の下オリーブ核は軸索を小脳に投射する。軸索は橋の背部で小脳に入り、そこから小脳皮質に投射する。小脳皮質ではいくつかの細胞の中で一つのプルキンエ細胞に特異的なシナプスを形成する。その特徴的な形態はラモニイカハールによってもその著書の中で描写されている。 | ||
<ターゲット認識についての歴史的な考察> | <ターゲット認識についての歴史的な考察> | ||
Santiago Ramon y Cajalが前世紀の初頭にその詳細な組織学的解析から、神経の突起があたりにあるシグナルをselectiveに感知しながら目的地へ進んでいるのではないかと推測し、chemotaxisに似た現象が神経系の形成に重要なのではないかと提唱していた。それに対して主に末梢神経の再生の実験結果から1920年代から30年代にはPaul A Weissらによる神経系の線維の結合は主に物理的な制約で決定され、その結合は決して特異的なものではなくランダムであり、その後にその回路を使用する事によってその使われた回路が最終的に残るという説が主流を占めていた。その説に対してWeissの学生であったRoger Sperryは彼の一連のカエルやイモリといった動物の眼を使った神経再生の実験により、神経の回路形成にはやはりselectivityが存在し、そのメカニズムについてchemoaffinity theoryを提唱した<ref><pubmed>14077501</pubmed></ref>。このchemoaffinity | Santiago Ramon y Cajalが前世紀の初頭にその詳細な組織学的解析から、神経の突起があたりにあるシグナルをselectiveに感知しながら目的地へ進んでいるのではないかと推測し、chemotaxisに似た現象が神経系の形成に重要なのではないかと提唱していた。それに対して主に末梢神経の再生の実験結果から1920年代から30年代にはPaul A Weissらによる神経系の線維の結合は主に物理的な制約で決定され、その結合は決して特異的なものではなくランダムであり、その後にその回路を使用する事によってその使われた回路が最終的に残るという説が主流を占めていた。その説に対してWeissの学生であったRoger Sperryは彼の一連のカエルやイモリといった動物の眼を使った神経再生の実験により、神経の回路形成にはやはりselectivityが存在し、そのメカニズムについてchemoaffinity theoryを提唱した<ref><pubmed>14077501</pubmed></ref>。このchemoaffinity theoryには2つの概念が含まれており、1つは神経細胞はそれぞれの細胞、線維におそらく化学物質からなる個々を認識するタグがついており、これによってお互いを区別して、その化学親和性で神経細胞はおそらくシングル細胞のレベルで特異的な神経結合を作る事ができるというもので、もう1つは特に視覚系で明らかであるが、その線維投射のパターンが規則正しく、トポグラフィックであることから、少数のモルフォゲンの様なグレディエントで存在する分子群がこのchemoaffinityを担う物質として機能するというものである(図2)。Chemoaffinity theoryについては激しい論争があったが、やがて分子レベルでの解析、数理モデル等に支えられ、神経発生の分野で一般に受け入れられる概念となり、現在のターゲット認識の概念は基本的にこのchemoaffinity theoryの流れを汲んでいる。[[Image:辞典02.jpg|thumb|center|図2 Chemoaffinity theory]] | ||
図2の説明 ニワトリの系において網膜の神経節細胞は視蓋にその軸索を投射する。その時に、網膜の鼻側にある細胞は視蓋の後側に、耳側にある細胞は視蓋の前側に軸索を送る。このトポグラフィックな投射は、視蓋に前後軸に沿ってグレディエントを形成してephrhinAが存在し、そのレセプターであるEphAが網膜の神経節細胞において内外軸に沿ってグレディエントを形成して発現していて、その相互作用によって起こる。 | |||
<ターゲット認識、特にシナプス形成における特異性とそれをサポートする分子> | <ターゲット認識、特にシナプス形成における特異性とそれをサポートする分子> |
回編集