「標的認識」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
49行目: 49行目:
—大脳皮質での領域特異的ターゲティングー  かつて、Pasko RakicとDennis O’learyの間で大脳皮質の発生に関して論争があった<ref><pubmed>22099452</pubmed></ref>。Protomap vs Protocortexと呼ばれたもので、端的に言えば大脳は領域ごとに発生の早い段階から遺伝的に決定されているという説と、そうではなくて大脳は他の神経細胞(領域)とつながったあとに領域ごとに差が出てくるという説である(Dennisが後者である事は今にして思うと興味深い)。Rakicの弟子であるPat Levittは、もし大脳皮質の領域が早い段階で決定されているならば、例えばある皮質領域に特異的にでている分子とかがあるはずであると考え、それを探したところ辺縁系皮質領域に特異的にでている分子を得た。これはLAMPと呼ばれる細胞接着因子であるが、この分子の発現をマーカーとしてこれに皮質のトランスプラントの実験を組み合わせる事によって、辺縁系皮質領域は辺縁系からの線維を引き寄せるメカニズムがある事が示されている(図6)<ref><pubmed>1570290</pubmed></ref>。このターゲット認識に関わる分子はLAMPそのものである可能性もある。[[Image:辞典06.jpg|thumb|center|図6 大脳皮質での領域特異的なターゲティング]]  
—大脳皮質での領域特異的ターゲティングー  かつて、Pasko RakicとDennis O’learyの間で大脳皮質の発生に関して論争があった<ref><pubmed>22099452</pubmed></ref>。Protomap vs Protocortexと呼ばれたもので、端的に言えば大脳は領域ごとに発生の早い段階から遺伝的に決定されているという説と、そうではなくて大脳は他の神経細胞(領域)とつながったあとに領域ごとに差が出てくるという説である(Dennisが後者である事は今にして思うと興味深い)。Rakicの弟子であるPat Levittは、もし大脳皮質の領域が早い段階で決定されているならば、例えばある皮質領域に特異的にでている分子とかがあるはずであると考え、それを探したところ辺縁系皮質領域に特異的にでている分子を得た。これはLAMPと呼ばれる細胞接着因子であるが、この分子の発現をマーカーとしてこれに皮質のトランスプラントの実験を組み合わせる事によって、辺縁系皮質領域は辺縁系からの線維を引き寄せるメカニズムがある事が示されている(図6)<ref><pubmed>1570290</pubmed></ref>。このターゲット認識に関わる分子はLAMPそのものである可能性もある。[[Image:辞典06.jpg|thumb|center|図6 大脳皮質での領域特異的なターゲティング]]  


 図6の説明 マウスのE14の脳において、体性感覚の情報は感覚野へ(SM)また、辺縁系からの情報は辺縁系皮質領域へ(PR)、それぞれ投射する。PRの領域はLAMPという細胞接着因子が発現されている。この時期にLAMP陽性の皮質領域を感覚野へ移植すると辺縁系からの線維は移植された感覚野へ投射する様になる。
 図6の説明 マウスのE14の脳において、体性感覚の情報は感覚野へ(SM)また、辺縁系からの情報は辺縁系皮質領域へ(PR)、それぞれ投射する。PRの領域はLAMPという細胞接着因子が発現されている。この時期にLAMP陽性の皮質領域を感覚野へ移植すると辺縁系からの線維は移植された感覚野へ投射する様になる。  


—神経細胞内での特定のコンパートメントへのターゲティングー  マウスの海馬では、脳の様々な領域からの入力が錐体細胞の樹状突起の特異的な領域にターゲッティングをすることが知られている。CA3領域の一番外側の層にはentorhinal cortexから、中間部には錐体細胞から、そして一番の近位の層には歯状回の顆粒細胞からの苔状線維がシナプスを形成する。この層特異的なターゲッティングには様々なガイダンス分子、例えば、Netrin、Eph、Semaphorins、slit、reelinそして細胞接着因子などが関与している<ref><pubmed>20484647</pubmed></ref>。  
—神経細胞内での特定のコンパートメントへのターゲティングー  マウスの海馬では、脳の様々な領域からの入力が錐体細胞の樹状突起の特異的な領域にターゲッティングをすることが知られている。CA3領域の一番外側の層にはentorhinal cortexから、中間部には錐体細胞から、そして一番の近位の層には歯状回の顆粒細胞からの苔状線維がシナプスを形成する。この層特異的なターゲッティングには様々なガイダンス分子、例えば、Netrin、Eph、Semaphorins、slit、reelinそして細胞接着因子などが関与している<ref><pubmed>20484647</pubmed></ref>。  
55行目: 55行目:
 大脳皮質や小脳皮質には様々なinterneuronsが存在し、多様な種類のものが錐体細胞やプルキニエ細胞の細胞内の特異的なコンパートメントにシナプスを形成することが知られている。例えばシャンデリア細胞はアクソンの起始部に、バスケット細胞はアクソンの起始部や樹状突起側の細胞体のところに、マルチノーニ細胞は樹状突起の遠位部に、それぞれシナプスを形成する<ref><pubmed>22251963</pubmed></ref>。プルキニエ細胞の場合にはこれは細胞接着因子に依存しておこることが示されている(図7)<ref><pubmed>15479642</pubmed></ref>。[[Image:辞典07.jpg|thumb|center|図7 小脳のプルキンエ細胞の細胞内コンパートメント特異的な投射]]  
 大脳皮質や小脳皮質には様々なinterneuronsが存在し、多様な種類のものが錐体細胞やプルキニエ細胞の細胞内の特異的なコンパートメントにシナプスを形成することが知られている。例えばシャンデリア細胞はアクソンの起始部に、バスケット細胞はアクソンの起始部や樹状突起側の細胞体のところに、マルチノーニ細胞は樹状突起の遠位部に、それぞれシナプスを形成する<ref><pubmed>22251963</pubmed></ref>。プルキニエ細胞の場合にはこれは細胞接着因子に依存しておこることが示されている(図7)<ref><pubmed>15479642</pubmed></ref>。[[Image:辞典07.jpg|thumb|center|図7 小脳のプルキンエ細胞の細胞内コンパートメント特異的な投射]]  


 図7の説明 プルキンエ細胞は様々な介在ニューロンからシナプス形成を受けるが、そのシナプスの場所は特異的な細胞内コンパートメントに形成される。そのうちバスケット細胞は軸索のイニシャルセグメントのところにシナプスを形成するが、その形成には神経細胞接着因子であるneurofascinのプルキンエ細胞内での濃度勾配様の局在が(イニシャルセグメントのところに集中する)重要であることが明らかになっている。
 図7の説明 プルキンエ細胞は様々な介在ニューロンからシナプス形成を受けるが、そのシナプスの場所は特異的な細胞内コンパートメントに形成される。そのうちバスケット細胞は軸索のイニシャルセグメントのところにシナプスを形成するが、その形成には神経細胞接着因子であるneurofascinのプルキンエ細胞内での濃度勾配様の局在が(イニシャルセグメントのところに集中する)重要であることが明らかになっている。  


—小脳でのターゲティングー  小脳の回路については昔から精力的に研究が行われてきた。小脳に入ってくる2つの主な入力は延髄の下オリーブ核からの登上線維と橋の橋核からの苔状線維であるが、この2つは前者がプルキニエ細胞、後者が顆粒細胞とそれぞれターゲットが異なる。これらの線維が小脳皮質の発達に伴ってどうやって小脳皮質まできて、どういう発達過程を示すかについては詳細な観察による記載がされているが(例えばCarol Masonら)、これらのターゲッティングが分子レベルでどうなっているかについてはまだ明らかになっていない。Constantine Soteloは登上線維のプルキニエ細胞ヘのターゲティングに関わる分子に非常に興味を持っていて、彼は小脳のプルキニエ細胞は矢状断面でグループを作り、それに下オリーブ核からの登上線維がトポグラフィックにターゲティングすることに注目、小脳で矢状断面に沿ったストライプ状に発現する細胞接着因子を探した。そのうちの一つが細胞接着因子のSC1/DM-GRASP/BEN/ALCAMである。しかしながら、この分子がが登上線維とプルキニエ細胞のマッチングに関与しているかどうかの検証はなされていない(図7)<ref><pubmed>8627367</pubmed></ref>。  
—小脳でのターゲティングー  小脳の回路については昔から精力的に研究が行われてきた。小脳に入ってくる2つの主な入力は延髄の下オリーブ核からの登上線維と橋の橋核からの苔状線維であるが、この2つは前者がプルキニエ細胞、後者が顆粒細胞とそれぞれターゲットが異なる。これらの線維が小脳皮質の発達に伴ってどうやって小脳皮質まできて、どういう発達過程を示すかについては詳細な記載がされているが(例えばConstantino SoteloやCarol Masonら)、これらのターゲッティングが分子レベルでどうなっているかについてはまだ明らかになっていない(一つの登上線維が一つのプルキンエ細胞とシナプスを作るようになるリファイメントの過程については日本の狩野らの仕事により分子メカニズムが明らかにされてきている)。Constantine Soteloは登上線維のプルキニエ細胞ヘのターゲティングに関わる分子に非常に興味を持っていて、彼は小脳のプルキニエ細胞は矢状断面でグループを作り、それに下オリーブ核からの登上線維がトポグラフィックにターゲティングすることに注目、小脳で矢状断面に沿ったストライプ状に発現する細胞接着因子を探した。そのうちの一つが細胞接着因子のSC1/DM-GRASP/BEN/ALCAMである。しかしながら、この分子が登上線維とプルキニエ細胞のマッチングに関与しているかどうかの検証はなされていない(図8)<ref><pubmed>8627367</pubmed></ref>。  


—脊髄内外における運動神経を中心としたターゲッティング(Tom Jessellら)ー  Tom Jessellは長年にわたり脊髄の系を使って神経発生の研究を続けてきている。脊髄の中で運動神経細胞はある特定の筋に支配神経を送るがその神経細胞はその支配筋からの感覚のフィードバックを受ける。その細胞特異的なループ系路の形成に関わる分子メカニズムが明らかにされつつある。また、脊髄の中での介在ニューロンを介した運動神経細胞への局所サーキットの形成にも特異的なターゲット認識が必要であるがこれについても分子メカニズムが明らかにされつつある<ref><pubmed>19804761</pubmed></ref><ref><pubmed>22078502</pubmed></ref>。  また、運動神経細胞は四肢の筋肉を支配するが、脊髄の運動神経細胞カラム内の神経細胞の位置によって、支配する四肢の筋肉の位置が決定されるというトポグラフィックマップが存在する。この四肢の筋肉のターゲット認識は様々なガイダンス分子が関与することが知られ、SemaphorinやEph-Ephrinが関与することが明らかにされている(図8)<ref><pubmed>19109910</pubmed></ref>。  
 図8の説明 
 
—脊髄内外における運動神経を中心としたターゲッティング(Tom Jessellら)ー  Tom Jessellは長年にわたり脊髄の系を使って神経発生の研究を続けてきている。脊髄の中で運動神経細胞はある特定の筋に支配神経を送るがその神経細胞はその支配筋からの感覚のフィードバックを受ける。その細胞特異的なループ系路の形成に関わる分子メカニズムが明らかにされつつある。また、脊髄の中での介在ニューロンを介した運動神経細胞への局所サーキットの形成にも特異的なターゲット認識が必要であるがこれについても分子メカニズムが明らかにされつつある<ref><pubmed>19804761</pubmed></ref><ref><pubmed>22078502</pubmed></ref>。  また、運動神経細胞は四肢の筋肉を支配するが、脊髄の運動神経細胞カラム内の神経細胞の位置によって、支配する四肢の筋肉の位置が決定されるというトポグラフィックマップが存在する。この四肢の筋肉のターゲット認識は様々なガイダンス分子が関与することが知られ、SemaphorinやEph-Ephrinが関与することが明らかにされている(図9)<ref><pubmed>19109910</pubmed></ref>。[[Image:辞典09.jpg|thumb|center|図9 脊髄の運動神経細胞の四肢筋への投射]]
 
 図9の説明 脊髄内の運動神経カラムはその支配する四肢筋位置により、外側と内側に分かれる。それぞれの細胞は神経束を形成し脊髄から出るが四肢へ入るところで四肢の内側にある筋群と外側にある筋群に投射するものでその投射方向が分かれる。この過程には様々な分子メカニズムが関与していることが明らかにされてきている。


<br> <Waiting period>  
<br> <Waiting period>  
131

回編集

案内メニュー