「ヒストンメチル基転移酵素」の版間の差分

ナビゲーションに移動 検索に移動
184行目: 184行目:
== 神経細胞での機能 ==
== 神経細胞での機能 ==
===ヒストンリジンメチル基転移酵素 ===
===ヒストンリジンメチル基転移酵素 ===
 神経幹細胞は自己複製能とニューロン、アストロサイト及びオリゴデンドロサイトへの多分化能を持っており、脳の発達と恒常性にとって重要な役割を果たしているが、神経幹細胞の増殖・複製と分化には多くのヒストンリジンメチル基転移酵素が関与している。増殖にはSetd8の関与が示唆されており、Setd8に変異を加えることで機能が失われると、脳内のH4K20モノメチル化が失われるとともに止状態にある神経幹細胞の再活性化が遅れることが報告されている<ref name=Wickramasekara2019><pubmed>30832413</pubmed></ref>。また、Setd8はサイクリン依存性キナーゼ1(Cdk1)やWntシグナル経路の転写コアクチベーターであるearthbound1/jerky(Ebd1)のプロモーター領域に結合し、脳内でのCdk1およびEbd1の発現に必要であることも報告されている <ref name=Huang2021><pubmed>33565211</pubmed></ref>。Setd8と同様に、Cdk1とEbd1は神経幹細胞の再活性化を促進することがわかっており、Cdk1とEbd1の過剰発現によってSetd8変異脳で観察された神経幹細胞再活性化の障害を改善できることが示されている。これらの結果からSetd8は、Wntシグナル伝達と細胞周期の進行を調節することにより、神経幹細胞の再活性化を促進すると考えられる<ref name=Huang2021><pubmed>33565211</pubmed></ref>。
 [[神経幹細胞]]は自己複製能と[[ニューロン]]、[[アストロサイト]]及び[[オリゴデンドロサイト]]への[[多分化能]]を持っており、脳の発達と[[恒常性]]にとって重要な役割を果たしているが、神経幹細胞の[[増殖]]・[[複製]]と[[分化]]には多くのヒストンリジンメチル基転移酵素が関与している。増殖にはSetd8の関与が示唆されており、Setd8に変異を加えることで機能が失われると、脳内のH4K20モノメチル化が失われるとともに休止状態にある神経幹細胞の再活性化が遅れることが報告されている<ref name=Wickramasekara2019><pubmed>30832413</pubmed></ref>。また、Setd8は[[サイクリン依存性キナーゼ1]]([[Cdk1]])や[[Wntシグナル経路]]の転写コアクチベーターである[[earthbound1]]/[[jerky]]([[Ebd1]])の[[プロモーター]]領域に結合し、脳内でのCdk1およびEbd1の発現に必要であることも報告されている <ref name=Huang2021><pubmed>33565211</pubmed></ref>。Setd8と同様に、Cdk1とEbd1は神経幹細胞の再活性化を促進することがわかっており、Cdk1とEbd1の過剰発現によってSetd8変異脳で観察された神経幹細胞再活性化の障害を改善できることが示されている。これらの結果からSetd8は、Wntシグナル伝達と[[細胞周期]]の進行を調節することにより、神経幹細胞の再活性化を促進すると考えられる<ref name=Huang2021><pubmed>33565211</pubmed></ref>。


 神経前駆細胞からニューロンへの分化においてはSetdb1が重要な役割を果たしている。Setdb1は脳の発生初期の神経前駆細胞において高発現しており、ニューロン分化に必要な遺伝子の発現を抑制しているが、発生進行に伴いSetdb1の発現は低下するため、ニューロンへの分化が可能になる。しかし、発生初期からSetdb1が欠失すると、メカニズムは不明であるが、ニューロンへの分化と成熟に必要な遺伝子の発現が阻害され、ニューロン生成は妨げられる<ref name=Tan2012><pubmed>22991445</pubmed></ref>。一方で、分化後のニューロンにおいてSetdb1を過剰発現させると、空間認知障害やうつ様行動が誘発されるなど、Setdb1はニューロンのそれぞれの分化過程において異なる作用を持っている<ref name=Bharadwaj2014><pubmed>25467983</pubmed></ref><ref name=Jiang2010><pubmed>20505083</pubmed></ref>。
 神経前駆細胞からニューロンへの分化においてはSetdb1が重要な役割を果たしている。Setdb1は脳の発生初期の神経前駆細胞において高発現しており、ニューロン分化に必要な遺伝子の発現を抑制しているが、発生進行に伴いSetdb1の発現は低下するため、ニューロンへの分化が可能になる。しかし、発生初期からSetdb1が欠失すると、メカニズムは不明であるが、ニューロンへの分化と成熟に必要な遺伝子の発現が阻害され、ニューロン生成は妨げられる<ref name=Tan2012><pubmed>22991445</pubmed></ref>。一方で、分化後のニューロンにおいてSetdb1を過剰発現させると、[[空間認知障害]]や[[うつ様行動]]が誘発されるなど、Setdb1はニューロンのそれぞれの分化過程において異なる作用を持っている<ref name=Bharadwaj2014><pubmed>25467983</pubmed></ref><ref name=Jiang2010><pubmed>20505083</pubmed></ref>。


 G9aやG9a-like protein (GLP)も神経系において重要な役割を果たしている。前脳ニューロン特異的なG9aまたはGlpの欠損(ノックアウト)マウスにおいて、生後間もない状態では、明らかなニューロンの早期発達や構造上の欠陥は見られないが、生後6~8週齢のマウスでは、成熟ニューロン特異的な遺伝子発現パターンの変化や学習・記憶や意欲・報酬系の障害が見られる<ref name=Schaefer2009><pubmed>20005824</pubmed></ref>。さらにコカインの反復曝露によって、G9aの発現レベルが側坐核 (NAc) ニューロンで特異的に低下し、H3K9me2のレベルが有意に低下する<ref name=Maze2010><pubmed>20056891</pubmed></ref>。G9aの発現レベル低下を補完すると、コカインによるニューロンの形態変化、薬物依存行動としての常同行動の増加やストレスへの強い反応などに代表される行動変化は抑制される。また、NAcニューロンにおいてG9aを特異的に不活性化すると、コカインに曝露せずともニューロン形態変化が変化し、コカインに対する嗜好性も増強される。以上よりG9aの発現抑制の解除はコカインへの渇望を抑制するための効果的治療法となりうると考えられる<ref name=Shinkai2011><pubmed>21498567</pubmed></ref>。
 G9aや[[G9a-like protein]] ([[GLP]])も神経系において重要な役割を果たしている。[[前脳]]ニューロン特異的なG9aまたはGlpの欠損(ノックアウト)マウスにおいて、生後間もない状態では、明らかなニューロンの早期発達や構造上の欠陥は見られないが、生後6~8週齢のマウスでは、成熟ニューロン特異的な遺伝子発現パターンの変化や[[学習]]・[[記憶]]や[[意欲]]・[[報酬系]]の障害が見られる<ref name=Schaefer2009><pubmed>20005824</pubmed></ref>。さらに[[コカイン]]の反復曝露によって、G9aの発現レベルが[[側坐核]]ニューロンで特異的に低下し、H3K9me2のレベルが有意に低下する<ref name=Maze2010><pubmed>20056891</pubmed></ref>。G9aの発現レベル低下を補完すると、コカインによるニューロンの形態変化、薬物依存行動としての常同行動の増加やストレスへの強い反応などに代表される行動変化は抑制される。また、側座核ニューロンにおいてG9aを特異的に不活性化すると、コカインに曝露せずともニューロン形態変化が変化し、コカインに対する嗜好性も増強される。以上よりG9aの発現抑制の解除はコカインへの渇望を抑制するための効果的治療法となりうると考えられる<ref name=Shinkai2011><pubmed>21498567</pubmed></ref>。


 Ezh2とSuv4-20hは、GFAP陽性の放射状グリア様細胞においてニューロンへの分化を共同で調節しており、両遺伝子の欠失は海馬の発達に劇的な欠陥を引き起こす(単一ノックアウトでは観察されない)<ref name=Chang2022><pubmed>34890048</pubmed></ref>。また成体海馬においては、Ezh2とSuv4-20hが神経前駆細胞で異なる役割を果たすことが報告されており<ref name=Rhodes2023><pubmed>36018148</pubmed></ref> 、Ezh2は早期分化を抑制することにより神経前駆細胞集団の維持に大きな役割を果たし、一方でSuv4-20hは神経前駆細胞の細胞周期のS期進行を仲介することで神経前駆細胞の増殖に影響を与えると考えられている<ref name=Rhodes2018><pubmed>29433384</pubmed></ref><ref name=Rhodes2017>'''Rhodes, C. (2017).'''<br>Epigenetic Repression in the Context of Adult Neurogenesis. 2017, The University of Texas at San Antonio.</ref>。
 Ezh2とSuv4-20hは、[[グリア線維性酸性タンパク質]]([[glial fibrillary acidic protein]], [[GFAP]])陽性の[[放射状グリア細胞]]においてニューロンへの分化を共同で調節しており、両遺伝子の欠失は[[海馬]]の発達に劇的な欠陥を引き起こす(単一ノックアウトでは観察されない)<ref name=Chang2022><pubmed>34890048</pubmed></ref>。また成体海馬においては、Ezh2とSuv4-20hが[[神経前駆細胞]]で異なる役割を果たすことが報告されており<ref name=Rhodes2023><pubmed>36018148</pubmed></ref> 、Ezh2は早期分化を抑制することにより神経前駆細胞集団の維持に大きな役割を果たし、一方でSuv4-20hは神経前駆細胞の細胞周期の[[S期]]進行を仲介することで神経前駆細胞の増殖に影響を与えると考えられている<ref name=Rhodes2018><pubmed>29433384</pubmed></ref><ref name=Rhodes2017>'''Rhodes, C. (2017).'''<br>Epigenetic Repression in the Context of Adult Neurogenesis. 2017, The University of Texas at San Antonio.</ref>。


 Suv39h1/2によるH3K9メチル化は、成体海馬の神経前駆細胞からニューロンへの分化を制御していることがわかっている。成体海馬の神経前駆細胞におけるSuv39h1/2の薬理学的阻害は、ニューロン分化を阻害する一方で増殖を亢進させた<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。さらに、歯状回でSuv39h1/2をノックダウンするとニューロン新生が阻害されたことから、Suv39h1/2を介したH3K9me3が成体海馬のニューロン新生に重要な役割を果たしていると考えられる<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。
 Suv39h1/2によるH3K9メチル化は、成体海馬の神経前駆細胞からニューロンへの分化を制御していることがわかっている。成体海馬の神経前駆細胞におけるSuv39h1/2の薬理学的阻害は、ニューロン分化を阻害する一方で増殖を亢進させた<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。さらに、[[歯状回]]でSuv39h1/2をノックダウンするとニューロン新生が阻害されたことから、Suv39h1/2を介したH3K9me3が成体海馬のニューロン新生に重要な役割を果たしていると考えられる<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。


 成体での脳室下帯のニューロン新生においてはMll1が必須であり、Mll1欠損の神経幹細胞ではニューロンへの分化がほとんど起こらず、グリア系列に分化したという報告がある<ref name=Potts2014><pubmed>24887289</pubmed></ref><ref name=Lim2009><pubmed>19212323</pubmed></ref>。脳室下帯に存在する神経前駆細胞では、通常Dlx2遺伝子の転写開始点が高レベルのH3K4me3を有することで転写が活性化されている。一方Mll1欠損神経前駆細胞では、Dlx2遺伝子のクロマチンでこのH3K4me3が維持され、また転写抑制に関与するH3K27me3により二重にマークされることで、Dlx2の発現が抑制されている<ref name=Lim2009><pubmed>19212323</pubmed></ref>。
 成体での[[脳室下帯]]のニューロン新生においてはMll1が必須であり、Mll1欠損の神経幹細胞ではニューロンへの分化がほとんど起こらず、グリア系列に分化したという報告がある<ref name=Potts2014><pubmed>24887289</pubmed></ref><ref name=Lim2009><pubmed>19212323</pubmed></ref>。脳室下帯に存在する神経前駆細胞では、通常Dlx2遺伝子の転写開始点が高レベルのH3K4me3を有することで転写が活性化されている。一方Mll1欠損神経前駆細胞では、[[Dlx2]]遺伝子の[[クロマチン]]でこのH3K4me3が維持され、また[[転写抑制]]に関与するH3K27me3により二重にマークされることで、Dlx2の発現が抑制されている<ref name=Lim2009><pubmed>19212323</pubmed></ref>。


===タンパク質アルギニンメチル基転移酵素===
===タンパク質アルギニンメチル基転移酵素===

案内メニュー