「ヒストンメチル基転移酵素」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
11行目: 11行目:


== 歴史・背景 ==
== 歴史・背景 ==
 1964年に[[ゲノム]][[DNA]]の[[mRNA]]への[[転写]]が[[ヒストン]]タンパク質の[[リジン]]のε-アミノ基のメチル化によって調節されることが見出された<ref name=Allfrey1964><pubmed>17836360</pubmed></ref>。しかし、[[w:Thomas Jenuwein|Thomas Jenuwein]]らにより、最初の[[ヒストンリジンメチル基転移酵素]]である[[ヒト]]および[[マウス]] [[suppressor of variegation 3-9 homolog1]] ([[SUV39H1]]、[[KMT1A]]としても知られる) が報告されたのは2000年になってからのことであった。その後、[[ショウジョウバエ]]の3つのタンパク質、[[Su(var)3-9]]、[[Enhancer of Zeste]]、[[Trithorax]]が共通して持つ[[SETドメイン]]とのホモロジー検索により、多くのヒストンリジンメチル基転移酵素が同定された<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Jenuwein2006><pubmed>16857008</pubmed></ref>。
[[ファイル:Nakashima HMT Fig1.png|サムネイル|'''図1. ヒストンリジンメチル基転移酵素(KMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]]
[[ファイル:Nakashima HMT Fig2.png|サムネイル|'''図2. タンパク質アルギニンメチル基転移酵素素(PRMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]] 
 1964年に[[ゲノム]][[DNA]]の[[mRNA]]への[[転写]]が[[ヒストン]]タンパク質の[[リジン]]のε-アミノ基のメチル化によって調節されることが見出された<ref name=Allfrey1964><pubmed>17836360</pubmed></ref>('''図1''')。しかし、[[w:Thomas Jenuwein|Thomas Jenuwein]]らにより、最初の[[ヒストンリジンメチル基転移酵素]]である[[ヒト]]および[[マウス]] [[suppressor of variegation 3-9 homolog1]] ([[SUV39H1]]、[[KMT1A]]としても知られる) が報告されたのは2000年になってからのことであった。その後、[[ショウジョウバエ]]の3つのタンパク質、[[Su(var)3-9]]、[[Enhancer of Zeste]]、[[Trithorax]]が共通して持つ[[SETドメイン]]とのホモロジー検索により、多くのヒストンリジンメチル基転移酵素が同定された<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Jenuwein2006><pubmed>16857008</pubmed></ref>。


 一方、タンパク質アルギニンメチル基転移酵素は、ヒストンやその他のタンパク質のアルギニン残基のメチル化を触媒することによって様々な生物学的プロセスに関与する。ヒストンタンパク質のアルギニン残基のメチル化が発見された1967年以降から現在までに哺乳類で9つが同定されている。
 一方、タンパク質アルギニンメチル基転移酵素は、ヒストンやその他のタンパク質のアルギニン残基のメチル化を触媒することによって様々な生物学的プロセスに関与する('''図2''')。ヒストンタンパク質のアルギニン残基のメチル化が発見された1967年以降から現在までに哺乳類で9つが同定されている。


 いずれも[[S-アデノシル-L-メチオニン]] ([[S-adenosyl-L-methionine]], [[SAM]]/[[Adomet]])を[[補因子]]として、リジンあるいはアルギニン残基にメチル基を転移させる。[[酵母]]からヒトまで広く[[真核生物]]で進化的に保存されている<ref name=Rea2000><pubmed>10949293</pubmed></ref>。
 いずれも[[S-アデノシル-L-メチオニン]] ([[S-adenosyl-L-methionine]], [[SAM]]/[[Adomet]])を[[補因子]]として、リジンあるいはアルギニン残基にメチル基を転移させる。[[酵母]]からヒトまで広く[[真核生物]]で進化的に保存されている<ref name=Rea2000><pubmed>10949293</pubmed></ref>。
20行目: 22行目:
 ドメイン構造、標的分子となるヒストン残基とメチル化の数で分類される('''表1''')。
 ドメイン構造、標的分子となるヒストン残基とメチル化の数で分類される('''表1''')。
===ヒストンリジンメチル基転移酵素===
===ヒストンリジンメチル基転移酵素===
 2つのクラスから構成される。
 SETドメイン型、非SETドメイン型の2つのクラスから構成される。
==== SETドメイン型 ====
==== SETドメイン型 ====
 SETドメインを持ち、ヒストンリジンメチル基転移酵素の大部分を占める。
 SETドメインを持ち、ヒストンリジンメチル基転移酵素の大部分を占める。
27行目: 29行目:


==== 非SETドメイン型 ====
==== 非SETドメイン型 ====
 SSETドメインの代わりにseven-beta-strand (7βS)ドメインを持ち、このドメインが[[ヌクレオソーム]]表面に露出しているヒストン H3 の79番目のリジン残基(H3K79)に対するメチル基供与活性を持つ<ref name=Husmann2019><pubmed>31582846</pubmed></ref><ref name=Kim2014><pubmed>24526115</pubmed></ref><ref name=Park2022><pubmed>35794091</pubmed></ref>。Dot1 like protein ([[DOT1L]]。[[KMT4]]としても知られる)の1種類のみが属する<ref name=Okada2005><pubmed>15851025</pubmed></ref><ref name=vanLeeuwen2002><pubmed>12086673</pubmed></ref>。
 SETドメインの代わりにseven-beta-strand (7βS)ドメインを持ち、このドメインが[[ヌクレオソーム]]表面に露出しているヒストン H3 の79番目のリジン残基(H3K79)に対するメチル基供与活性を持つ<ref name=Husmann2019><pubmed>31582846</pubmed></ref><ref name=Kim2014><pubmed>24526115</pubmed></ref><ref name=Park2022><pubmed>35794091</pubmed></ref>。Dot1 like protein ([[DOT1L]]。[[KMT4]]としても知られる)の1種類のみが属する<ref name=Okada2005><pubmed>15851025</pubmed></ref><ref name=vanLeeuwen2002><pubmed>12086673</pubmed></ref>。


=== タンパク質アルギニンメチル基転移酵素 ===
=== タンパク質アルギニンメチル基転移酵素 ===
44行目: 46行目:
|[[SETD1B]] (me1, me2, me3)
|[[SETD1B]] (me1, me2, me3)
|-
|-
|[[MLL1]](me1, me2, me3)
|[[MLL1]] (me1, me2, me3)
|-
|-
|[[MLL2]] (me1, me2, me3)
|[[MLL2]] (me1, me2, me3)
113行目: 115行目:
|rowspan="4"|H4R3 ||[[PRMT1]] (me1, me2(a))
|rowspan="4"|H4R3 ||[[PRMT1]] (me1, me2(a))
|-
|-
|PRMT5(me1, me2(s))
|PRMT5 (me1, me2(s))
|-
|-
|PRMT6(me1, me2(a))
|PRMT6 (me1, me2(a))
|-
|-
|PRMT7(me1, me2(s))
|PRMT7 (me1, me2(s))
|}
|}


==組織・細胞分布 ==
==組織・細胞分布 ==
 多くのヒストンメチル基転移酵素は様々な組織で発現しているが、中でもいくつかのヒストンリジンメチル基転移酵素は組織特異的な発現、細胞特異的な発現を示す。組織特異的な発現のある主なヒストンメチル基転移酵素を'''表2'''、組織特異的な発現は示さないが、細胞特異的な発現を示すヒストンメチル基転移酵素を'''表3'''に示した。詳細はThe Human Protein Atlasを参考。
 多くのヒストンメチル基転移酵素は様々な組織で発現しているが、中でもいくつかのヒストンリジンメチル基転移酵素は組織特異的な発現、細胞特異的な発現を示す。組織特異的な発現のある主なヒストンメチル基転移酵素を'''表2'''、組織特異的な発現は示さないが、細胞特異的な発現を示すヒストンメチル基転移酵素を'''表3'''に示した。詳細は[https://www.proteinatlas.org/ The Human Protein Atlas]を参考。
{| class="wikitable"
{| class="wikitable"
|+表2. 組織特異的な発現を示すヒストンメチル基転移酵素
|+表2. 組織特異的な発現を示すヒストンメチル基転移酵素
176行目: 178行目:


== 分子機能 ==
== 分子機能 ==
[[ファイル:Nakashima HMT Fig1.png|サムネイル|'''図1. ヒストンリジンメチル基転移酵素(KMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]]
[[ファイル:Nakashima HMT Fig2.png|サムネイル|'''図2. タンパク質アルギニンメチル基転移酵素素(PRMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]] 
 各クラスは触媒ドメインは異なるものの、いずれもメチル基供与体として [[S-アデノシル-L-メチオニン]] ([[SAM]]/[[Adomet]]) を使用する<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Nguyen2011><pubmed>21724828</pubmed></ref>。リジン残基には1~3個のメチル基が、アルギニン残基に1あるいは2個のメチル基が付加される('''図1, 2''')。モノ・ジ・トリメチル化のどの状態まで触媒するかは'''表1'''に示したようにそれぞれの特異性によって分かれている。ヒストンH3のリジン残基ではK4(4番目のリジン残基)、K9、K27、K36、K79が、アルギニン残基ではR2(2番目のアルギニン残基)、R8、R17、R26がメチル化され、ヒストンH4ではK20、R3がメチル化される。
 各クラスは触媒ドメインは異なるものの、いずれもメチル基供与体として [[S-アデノシル-L-メチオニン]] ([[SAM]]/[[Adomet]]) を使用する<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Nguyen2011><pubmed>21724828</pubmed></ref>。リジン残基には1~3個のメチル基が、アルギニン残基に1あるいは2個のメチル基が付加される('''図1, 2''')。モノ・ジ・トリメチル化のどの状態まで触媒するかは'''表1'''に示したようにそれぞれの特異性によって分かれている。ヒストンH3のリジン残基ではK4(4番目のリジン残基)、K9、K27、K36、K79が、アルギニン残基ではR2(2番目のアルギニン残基)、R8、R17、R26がメチル化され、ヒストンH4ではK20、R3がメチル化される。


194行目: 194行目:
 Suv39h1/2によるH3K9メチル化は、成体海馬の神経前駆細胞からニューロンへの分化を制御していることがわかっている。成体海馬の神経前駆細胞におけるSuv39h1/2の薬理学的阻害は、ニューロン分化を阻害する一方で増殖を亢進させた<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。さらに、[[歯状回]]でSuv39h1/2をノックダウンするとニューロン新生が阻害されたことから、Suv39h1/2を介したH3K9me3が成体海馬のニューロン新生に重要な役割を果たしていると考えられる<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。
 Suv39h1/2によるH3K9メチル化は、成体海馬の神経前駆細胞からニューロンへの分化を制御していることがわかっている。成体海馬の神経前駆細胞におけるSuv39h1/2の薬理学的阻害は、ニューロン分化を阻害する一方で増殖を亢進させた<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。さらに、[[歯状回]]でSuv39h1/2をノックダウンするとニューロン新生が阻害されたことから、Suv39h1/2を介したH3K9me3が成体海馬のニューロン新生に重要な役割を果たしていると考えられる<ref name=Guerra2021><pubmed>35096813</pubmed></ref>。


 成体での[[脳室下帯]]のニューロン新生においてはMll1が必須であり、Mll1欠損の神経幹細胞ではニューロンへの分化がほとんど起こらず、グリア系列に分化したという報告がある<ref name=Potts2014><pubmed>24887289</pubmed></ref><ref name=Lim2009><pubmed>19212323</pubmed></ref>。脳室下帯に存在する神経前駆細胞では、通常Dlx2遺伝子の転写開始点が高レベルのH3K4me3を有することで転写が活性化されている。一方Mll1欠損神経前駆細胞では、[[Dlx2]]遺伝子の[[クロマチン]]でこのH3K4me3が維持され、また[[転写抑制]]に関与するH3K27me3により二重にマークされることで、Dlx2の発現が抑制されている<ref name=Lim2009><pubmed>19212323</pubmed></ref>。
 成体での[[脳室下帯]]のニューロン新生においてはMll1が必須であり、Mll1欠損の神経幹細胞ではニューロンへの分化がほとんど起こらず、グリア系列に分化したという報告がある<ref name=Potts2014><pubmed>24887289</pubmed></ref><ref name=Lim2009><pubmed>19212323</pubmed></ref>。脳室下帯に存在する神経前駆細胞では、通常[[Dlx2]]遺伝子の転写開始点が高レベルのH3K4me3を有することで転写が活性化されている。一方Mll1欠損神経前駆細胞では、[[Dlx2]]遺伝子の[[クロマチン]]でこのH3K4me3が維持され、また[[転写抑制]]に関与するH3K27me3により二重にマークされることで、Dlx2の発現が抑制されている<ref name=Lim2009><pubmed>19212323</pubmed></ref>。


===タンパク質アルギニンメチル基転移酵素===
===タンパク質アルギニンメチル基転移酵素===
206行目: 206行目:
===脳神経系疾患===
===脳神経系疾患===
====ヒストンリジンメチル基転移酵素====
====ヒストンリジンメチル基転移酵素====
 Setdb1は、[[脳腫瘍]]において一般的に過剰発現され、主にヒストンH3K9me3を誘導し、[[腫瘍抑制遺伝子]]の発現を抑制する<ref name=Sepsa2015><pubmed>25602259</pubmed></ref>。また、[[統合失調症]]や[[うつ病]]などの[[気分障害]]、[[認知障害]]では、Setdb1の発現が上昇し、[[NMDA型グルタミン酸受容体]]サブユニット[[Grin2B]]の発現を抑制する<ref name=Bharadwaj2014><pubmed>25467983</pubmed></ref><ref name=Avramopoulos2007><pubmed>18007143</pubmed></ref>。これらの疾患では、陰性症状優位の表現型や疾患予後の悪化と関連している。さらに、ハンチントン病ではSetdb1の発現が上昇し、ハンチントン病の病因に関与する重要な遺伝子の発現低下と関連するとの報告がある<ref name=Ryu2006><pubmed>17142323</pubmed></ref>。
 Setdb1は、[[脳腫瘍]]において一般的に過剰発現され、主にヒストンH3K9me3を誘導し、[[腫瘍抑制遺伝子]]の発現を抑制する<ref name=Sepsa2015><pubmed>25602259</pubmed></ref>。また、[[統合失調症]]や[[うつ病]]などの[[気分障害]]、[[認知障害]]では、Setdb1の発現が上昇し、[[NMDA型グルタミン酸受容体]]サブユニット[[Grin2B]]の発現を抑制する<ref name=Bharadwaj2014><pubmed>25467983</pubmed></ref><ref name=Avramopoulos2007><pubmed>18007143</pubmed></ref>。これらの疾患では、[[陰性症状]]優位の表現型や疾患予後の悪化と関連している。さらに、[[ハンチントン病]]ではSetdb1の発現が上昇し、ハンチントン病の病因に関与する重要な遺伝子の発現低下と関連するとの報告がある<ref name=Ryu2006><pubmed>17142323</pubmed></ref>。


 一方、Setdb1遺伝子が欠損すると、シナプス形成に重要なIL1RAPL1 (Interleukin-1 receptor accessory protein-like 1)遺伝子のエンハンサーが活性化され、その発現が亢進する<ref name=Sun2018><pubmed>30103804</pubmed></ref><ref name=Markouli2021><pubmed>33279625</pubmed></ref>。この遺伝子の発現亢進がASDを含む精神・神経疾患の原因である可能性が示されている。
 一方、Setdb1遺伝子が欠損すると、[[シナプス形成]]に重要な[[IL1RAPL1]](Interleukin-1 receptor accessory protein-like 1)遺伝子の[[エンハンサー]]が活性化され、その発現が亢進する<ref name=Sun2018><pubmed>30103804</pubmed></ref><ref name=Markouli2021><pubmed>33279625</pubmed></ref>。この遺伝子の発現亢進が[[自閉スペクトラム症]]を含む精神・神経疾患の原因である可能性が示されている。


 また、レット症候群の原因遺伝子Mecp2との関与も報告されており、レット症候群のモデル動物であるMecp2 ノックアウトマウスの、ニューロンにおけるSetdb1を介したH3K9の過度なメチル化は、MeCP2の欠損のみによる表現型を、さらに悪化させることがわかっている<ref name=Jiang2011><pubmed>20869373</pubmed></ref>。
 また、レット症候群の原因遺伝子[[Mecp2]]との関与も報告されており、レット症候群のモデル動物であるMecp2ノックアウトマウスの、ニューロンにおけるSetdb1を介したH3K9の過度なメチル化は、MeCP2の欠損のみによる表現型を、さらに悪化させることがわかっている<ref name=Jiang2011><pubmed>20869373</pubmed></ref>。


====タンパク質アルギニンメチル基転移酵素ファミリー====
====タンパク質アルギニンメチル基転移酵素ファミリー====
 Prmt1が神経系疾患に関与していることが報告されている。fused in sarcoma (FUS)遺伝子の変異は[[筋萎縮性側索硬化症]] (amyotrophic lateral screlosis, ALS)の原因の1つであり、前頭側頭型認知症 (frontotemporal dementia, FTD)にも関与するが、Prmt1をノックアウトするとこれらの疾患に関連するFUS変異体による細胞毒性が増強される<ref name=Vance2009><pubmed>19251628</pubmed></ref><ref name=Tradewell2012><pubmed>21965298</pubmed></ref><ref name=Yamaguchi2012><pubmed>23152885</pubmed></ref>。この結果から、Prmt1がFUSのメチル化を介して、細胞内での凝集体形成や細胞毒性の抑制に寄与することが示唆されている。
 Prmt1が神経系疾患に関与していることが報告されている。[[fused in sarcoma]] ([[FUS]])遺伝子の変異は[[筋萎縮性側索硬化症]] ([[amyotrophic lateral sclerosis]], [[ALS)]]の原因の1つであり、[[前頭側頭型認知症]] ([[frontotemporal dementia]], [[FTD]])にも関与するが、Prmt1をノックアウトするとこれらの疾患に関連するFUS変異体による[[細胞毒性]]が増強される<ref name=Vance2009><pubmed>19251628</pubmed></ref><ref name=Tradewell2012><pubmed>21965298</pubmed></ref><ref name=Yamaguchi2012><pubmed>23152885</pubmed></ref>。この結果から、Prmt1がFUSのメチル化を介して、細胞内での凝集体形成や細胞毒性の抑制に寄与することが示唆されている。


 さらにPrmt1 は、アポトーシス促進性のBCL-2 antagonist of cell death(BAD)タンパク質をメチル化することによりAktからのリン酸化を阻害し、その結果アポトーシスを亢進させることが示されている<ref name=Sakamaki2011><pubmed>21444773</pubmed></ref>。最近の報告によると、Btg1ノックアウト髄芽腫モデルマウスでは、Prmt1の発現が増加し、このPrmt1-BAD軸を介して腫瘍のアポトーシスを亢進することで、腫瘍の発生を抑制している。<ref name=Ceccarelli2020><pubmed>32231994</pubmed></ref>。一方で神経膠腫細胞株においてPrmt1をノックダウンすると、細胞周期が停止し、アポトーシスに至った<ref name=Wang2012><pubmed>22917032</pubmed></ref>。これらの結果は、Prmt1が様々な種類の腫瘍細胞において異なる機能を果たす可能性を示唆している。
 さらにPrmt1 は、アポトーシス促進性の[[BCL-2 antagonist of cell death]]([[BAD]])タンパク質をメチル化することにより[[Akt]]からのリン酸化を阻害し、その結果アポトーシスを亢進させることが示されている<ref name=Sakamaki2011><pubmed>21444773</pubmed></ref>。最近の報告によると、[[Btg1]]ノックアウト[[髄芽腫]]モデルマウスでは、Prmt1の発現が増加し、このPrmt1-BAD軸を介して腫瘍のアポトーシスを亢進することで、腫瘍の発生を抑制している。<ref name=Ceccarelli2020><pubmed>32231994</pubmed></ref>。一方で[[神経膠腫]]細胞株においてPrmt1をノックダウンすると、細胞周期が停止し、アポトーシスに至った<ref name=Wang2012><pubmed>22917032</pubmed></ref>。これらの結果は、Prmt1が様々な種類の腫瘍細胞において異なる機能を果たす可能性を示唆している。


===腫瘍===
===腫瘍===
====ヒストンリジンメチル基転移酵素====
====ヒストンリジンメチル基転移酵素====
 ポリコーム抑制複合体(PRC)は、発生過程において体の前後軸や体節を決定するホメオボックス遺伝子の発現制御にかかわるものとして知られるが、その制御には特にPRC2複合体に含まれるEzh2の作用が重要である。Ezh2は、そのヒストンメチル基転移酵素活性を使用してH3K27me3を触媒し、E-cadherin、p16INK4α、p57、PSP94などの腫瘍抑制遺伝子を抑制しており<ref name=Cao2002><pubmed>12351676</pubmed></ref> 、Ezh2の過剰発現は子宮内膜がん、肺がん、黒色腫、乳がん、膀胱がんおよび結腸直腸がんにおけるがん細胞の増殖、移動、および浸潤を促進する<ref name=Eskander2013><pubmed>23792601</pubmed></ref><ref name=Serresi2018><pubmed>30487290</pubmed></ref><ref name=Yomtoubian2020><pubmed>31968251</pubmed></ref>。
 [[ポリコーム抑制複合体]]([[polycomb repressive complex]], [[PRC]])は、発生過程において体の[[前後軸]]や[[体節]]を決定する[[ホメオボックス遺伝子]]の発現制御にかかわるものとして知られるが、その制御には特に[[PRC2]]複合体に含まれるEzh2の作用が重要である。Ezh2は、そのヒストンメチル基転移酵素活性を使用してH3K27me3を触媒し、[[E-カドへリン]]、[[p16INK4α]]、[[p57]]、[[PSP94]]などの[[腫瘍抑制遺伝子]]を抑制しており<ref name=Cao2002><pubmed>12351676</pubmed></ref> 、Ezh2の過剰発現は[[子宮内膜がん]]、[[肺がん]]、[[黒色腫]]、[[乳がん]]、[[膀胱がん]]および[[結腸直腸がん]]におけるがん細胞の増殖、移動、および浸潤を促進する<ref name=Eskander2013><pubmed>23792601</pubmed></ref><ref name=Serresi2018><pubmed>30487290</pubmed></ref><ref name=Yomtoubian2020><pubmed>31968251</pubmed></ref>。


====タンパク質アルギニンメチル基転移酵素====
====タンパク質アルギニンメチル基転移酵素====
 タンパク質アルギニンメチル基転移酵素の過剰発現によってがんの増殖と転移を促進するとの報告がある。PRMT1は、急性骨髄性白血病における白血病細胞の増殖を促進することが示されており<ref name=He2019><pubmed>31217189</pubmed></ref><ref name=Zhu2019><pubmed>31395602</pubmed></ref><ref name=Liu2019><pubmed>31667013</pubmed></ref> 、他の研究では、PRMT1 の過剰発現によってE-cadherinと Twist1(TwistファミリーBHLH transcription factor 1)のメチル化を介して肺がんの転移と浸潤を促進する<ref name=Avasarala2015><pubmed>25847239</pubmed></ref>。またPRMT1がc-GASのアルギニン残基をメチル化して二量体化を阻害し、腫瘍細胞において、自然免疫経路であるcGAS/STINGシグナルを抑制することで、腫瘍化を促進することも報告された<ref name=Liu2023><pubmed>37193698</pubmed></ref>。PRMT5 については、EGFR / AKT / β-カテニンシグナル伝達経路を介して膵臓がん細胞の悪性度を高める<ref name=Ge2020><pubmed>31851779</pubmed></ref>。
 タンパク質アルギニンメチル基転移酵素の過剰発現によってがんの増殖と転移を促進するとの報告がある。PRMT1は、[[急性骨髄性白血病]]における白血病細胞の増殖を促進することが示されており<ref name=He2019><pubmed>31217189</pubmed></ref><ref name=Zhu2019><pubmed>31395602</pubmed></ref><ref name=Liu2019><pubmed>31667013</pubmed></ref> 、他の研究では、PRMT1 の過剰発現によってE-カドへリンと [[Twist1]]([[Twist family BHLH transcription factor 1]])のメチル化を介して肺がんの転移と浸潤を促進する<ref name=Avasarala2015><pubmed>25847239</pubmed></ref>。またPRMT1が[[c-GAS]]のアルギニン残基をメチル化して二量体化を阻害し、腫瘍細胞において、[[自然免疫]]経路であるc-GAS/[[STING]]シグナルを抑制することで、腫瘍化を促進することも報告された<ref name=Liu2023><pubmed>37193698</pubmed></ref>。PRMT5 については、[[EGFR[[/ AKT / [[β-カテニン]]シグナル伝達経路を介して[[膵臓がん]]細胞の悪性度を高める<ref name=Ge2020><pubmed>31851779</pubmed></ref>。
==関連語==
==関連語==
* [[ヒストン]]
* [[ヒストン]]

案内メニュー