214
回編集
Hiroyukinakahara (トーク | 投稿記録) 細編集の要約なし |
Hiroyukinakahara (トーク | 投稿記録) 細編集の要約なし |
||
17行目: | 17行目: | ||
情報量は、これらの直観を反映するように定義されている。確率<span class="texhtml">''p''</span> の事象が起きたことを知らせる情報に含まれる情報量は、 | 情報量は、これらの直観を反映するように定義されている。確率<span class="texhtml">''p''</span> の事象が起きたことを知らせる情報に含まれる情報量は、 | ||
< | <span class="texhtml"> − log''p''</span> (1) | ||
と定義される。(マイナスがついているのは、小さい確率の事象ほど大きな情報量になるのに役立つ。また上の偶奇を知ってからそのグループを知る場合と、最初から数字を知る場合の二つが、情報量として同じであるというのは、<span class="texhtml"> − log(1 / 2) − − log(1 / 3) = log(1 / 6)</span> として実現される。) | と定義される。(マイナスがついているのは、小さい確率の事象ほど大きな情報量になるのに役立つ。また上の偶奇を知ってからそのグループを知る場合と、最初から数字を知る場合の二つが、情報量として同じであるというのは、<span class="texhtml"> − log(1 / 2) − − log(1 / 3) = log(1 / 6)</span> として実現される。) | ||
より一般的には、何らかの確率で何かがおきるのだから、それらの事象を<span class="texhtml">''i'' = 1,...,''n''</span> で番号づけして、それぞれの確率を<math>p_1,p_2,\ldots,p_n</math> とすると、確率は足して1になるので、<math>\sum_{i=1}^n{p_i}=1</math> となる。6面体のサイコロの例で言えば、事象の数は6である。サイコロを振る前は、事象は何も起きていないのに対して、振った後ではどれかの事象が起きることになる。事象が起きる前にある不確実さは、まだ何が起きるのかはわからないのだから、<span class="texhtml"> − log''p''<sub>''i''</sub></span> で直接測ることはできない。一方で、まだ何が起きるかはわかっていないとしても、その時点での不確実さの平均を図ることは可能である。それは、 | より一般的には、何らかの確率で何かがおきるのだから、それらの事象を<span class="texhtml">''i'' = 1,...,''n''</span> で番号づけして、それぞれの確率を<math>p_1,p_2,\ldots,p_n</math> とすると、確率は足して1になるので、<math>\sum_{i=1}^n{p_i}=1</math> となる。6面体のサイコロの例で言えば、事象の数は6である。サイコロを振る前は、事象は何も起きていないのに対して、振った後ではどれかの事象が起きることになる。事象が起きる前にある不確実さは、まだ何が起きるのかはわからないのだから、<span class="texhtml"> − log''p''<sub>''i''</sub></span> で直接測ることはできない。一方で、まだ何が起きるかはわかっていないとしても、その時点での不確実さの平均を図ることは可能である。それは、 | ||
として測ることができる。この<math>H(p_1,p_2,\ldots,p_n)</math> | <math>H(p_1,p_2,\ldots,p_n) = - \sum_{i=1}^n p_i \log p_i</math> (2) | ||
として測ることができる。この<math>H(p_1,p_2,\ldots,p_n)</math> も情報量と呼ばれる。実は、先ほど定義した式(1)の情報量は、しばしば自己情報量(self information)と呼ばれ、むしろ式(2)の量のほうが情報量として一般的に使われる。また、式(2)の量は別名エントロピー(entropy)とも呼ばれる。以下、(1)と(2)の量を区別をしやすいように、(2)の量をエントロピーと呼んで記述する。 |
回編集