16,039
回編集
細編集の要約なし |
細編集の要約なし |
||
18行目: | 18行目: | ||
[[ファイル:Okuno Arc Fig1.png|サムネイル|'''図1. Arcタンパク質の構造と主な翻訳後修飾'''<br>Ub : ユビキチン化部位、SUMO : SUMO化、P : リン酸化部位]] | [[ファイル:Okuno Arc Fig1.png|サムネイル|'''図1. Arcタンパク質の構造と主な翻訳後修飾'''<br>Ub : ユビキチン化部位、SUMO : SUMO化、P : リン酸化部位]] | ||
== 構造 == | == 構造 == | ||
哺乳類のArcタンパク質は約400個のアミノ酸からなる('''図1''')。酵素活性領域などの既知の機能ドメインを持たず、他のタンパク質との直接的あるいは非直接的な相互作用の場を提供する“Hubタンパク質”であることが提唱されている<ref name=Nikolaienko2018><pubmed>28890419</pubmed></ref> 。N末側にはArcタンパク質の多量体化や他のタンパク質との相互作用に関わる[[コイルド・コイル]]構造をもつ<ref name=Chowdhury2006><pubmed>17088211</pubmed></ref><ref name=Eriksen2021><pubmed>33175445</pubmed></ref> 。また、近年、[[結晶構造解析]]の結果から、Arcタンパク質のC末側(従来、スペクトリン相同領域と報告されていた領域付近)には、[[レトロウイルス]][[human immunodeficiency virus]] ([[HIV]])や[[レトロトランスポゾン]][[Ty3]]/[[gypsy]] | 哺乳類のArcタンパク質は約400個のアミノ酸からなる('''図1''')。酵素活性領域などの既知の機能ドメインを持たず、他のタンパク質との直接的あるいは非直接的な相互作用の場を提供する“Hubタンパク質”であることが提唱されている<ref name=Nikolaienko2018><pubmed>28890419</pubmed></ref> 。N末側にはArcタンパク質の多量体化や他のタンパク質との相互作用に関わる[[コイルド・コイル]]構造をもつ<ref name=Chowdhury2006><pubmed>17088211</pubmed></ref><ref name=Eriksen2021><pubmed>33175445</pubmed></ref> 。また、近年、[[結晶構造解析]]の結果から、Arcタンパク質のC末側(従来、スペクトリン相同領域と報告されていた領域付近)には、[[レトロウイルス]][[human immunodeficiency virus]] ([[HIV]])や[[レトロトランスポゾン]][[Ty3]]/[[gypsy]]の[[gag]]タンパク質の一部([[カプシド]]部)と高い構造上の相同性があることが明らかになった<ref name=Pastuzyn2018><pubmed>29570995</pubmed></ref><ref name=Zhang2015><pubmed>25864631</pubmed></ref> 。 | ||
神経細胞で活動依存的に発現誘導されたArcタンパク質は細胞内で速やかに[[ユビキチン]][[プロテアソーム]]系により分解される<ref name=Mabb2014><pubmed>24945773</pubmed></ref> 。Arcタンパク質はユビキチン化以外にも[[SUMO]]化、[[リン酸化]]、[[パルミトイル化]]などの多様な[[翻訳後修飾]]を受けることが示されており、これらの修飾により細胞内局在や機能が調節されていると考えられるが詳細は不明である。 | |||
== ''Arc''遺伝子の起源とウイルス様性質 == | == ''Arc''遺伝子の起源とウイルス様性質 == | ||
進化的な観点からみると、[[脊椎動物]]において[[四肢動物]]([[両生類]]、[[爬虫類]]、[[鳥類]]、[[哺乳類]])では上記のN末側コイルド・コイルドメインとc末側GAGカプシドドメインの両構造を持つ''Arc''遺伝子オーソログが確認できるが、[[魚類]]では同様の構造をもつ遺伝子は確認できない。一方、魚類のゲノムにはTy3/Gypsyレトロトランスポゾンファミリー遺伝子が検出されるが、哺乳類ではこのレトロトランスポゾンは検出されない。Ty3/Gypsyレトロトランスポゾンはレトロウイルスと同じ祖先をもつと考えられており、gag(カプシド、[[ヌクレオカプシド]])と[[pol]]([[プロテアーゼ]]、[[逆転写酵素]]、[[インテグラーゼ]])をコードする。一部の魚類のTy3/Gypsyレトロトランスポゾン遺伝子ではN末側にコイルド・コイルドメインが挿入されていることから、脊椎動物の''Arc''遺伝子はTy3/Gypsyレトロトランスポゾンに遺伝子の構造変化が起こり、内在性遺伝子への”順化(domestication)’の結果、生じたものであると考えられる<ref name=Zhang2015><pubmed>25864631</pubmed></ref> 。 | |||
哺乳類のArcタンパク質は多量体を形成することが生化学的に示されており、さらに電子顕微鏡観察からカプシド多量体様の球形構造を形成することが明らかになっている<ref name=Eriksen2021><pubmed>33175445</pubmed></ref><ref name=Pastuzyn2018><pubmed>29570995</pubmed></ref> 。また、ショウジョウバエdArcも多量体化し、球形カプシド様構造を作る<ref name=Ashley2018><pubmed>29328915</pubmed></ref> 。レトロウイルスの球状カプシド構造がウイルスゲノムを内包するのと同様、Arcタンパク質によって形成されるカプシド様構造は''Arc'' mRNAを内包する<ref name=Ashley2018><pubmed>29328915</pubmed></ref><ref name=Pastuzyn2018><pubmed>29570995</pubmed></ref> | 興味深いことに、[[昆虫類]]でもTy3/Gypsyレトロトランスポゾン由来遺伝子は存在し、一部の種においてはpol領域を欠損してgag領域のみが遺伝子として存在している。[[ショウジョウバエ]]の''Arc''ホモローグ(''dArc1'', ''dArc2'')はそのような遺伝子の例であり<ref name=Ashley2018><pubmed>29328915</pubmed></ref> 、これらは脊椎動物の''Arc''とは独立して進化してきたものであると考えられる。 | ||
哺乳類のArcタンパク質は多量体を形成することが生化学的に示されており、さらに電子顕微鏡観察からカプシド多量体様の球形構造を形成することが明らかになっている<ref name=Eriksen2021><pubmed>33175445</pubmed></ref><ref name=Pastuzyn2018><pubmed>29570995</pubmed></ref> 。また、ショウジョウバエdArcも多量体化し、球形カプシド様構造を作る<ref name=Ashley2018><pubmed>29328915</pubmed></ref> 。レトロウイルスの球状カプシド構造がウイルスゲノムを内包するのと同様、Arcタンパク質によって形成されるカプシド様構造は''Arc'' mRNAを内包する<ref name=Ashley2018><pubmed>29328915</pubmed></ref><ref name=Pastuzyn2018><pubmed>29570995</pubmed></ref> 。また、レトロウイルスのカプシド構造は[[細胞膜]]に包まれた後、[[細胞外小胞]]として放出されるが、Arcカプシド様構造体も細胞外に放出される<ref name=Pastuzyn2018><pubmed>29570995</pubmed></ref> 。これらの知見はArcがレトロトランスポゾンを起源とする“内在性レトロウイルス遺伝子”であるという仮説を支持し、“Arc含有カプシド様構造を含む細胞外小胞は細胞間で''Arc'' mRNAを伝達する”という新たな可能性が提唱されている<ref name=Erlendsson2020><pubmed>31907439</pubmed></ref><ref name=Pastuzyn2018><pubmed>29570995</pubmed></ref> 。 | |||
== サブファミリー == | == サブファミリー == | ||
32行目: | 34行目: | ||
== 発現 == | == 発現 == | ||
=== 組織分布 === | === 組織分布 === | ||
成熟[[マウス]]における組織毎の網羅的遺伝子発現解析では、''Arc'' mRNAは主に[[脳]]と[[下垂体]]において高発現しているが、[[副腎]]や[[前立腺]]、[[精巣]]や[[脂肪]]組織にもある程度のレベルで発現している。脳における''Arc''発現は大脳皮質や海馬、[[線条体]]で高く、[[視床]]や[[間脳]]、[[小脳]]においては相対的に低い([https://mouse.brain-map.org/experiment/show/71612182 Allen Brain Atlas])。大脳皮質や海馬におけるArcは主に[[興奮性神経細胞]]に発現しており、[[抑制性神経細胞]]での発現は低い。一方、線条体においては抑制性神経細胞である[[中型有棘神経細胞]]が''Arc''を発現している。[[アストロサイト]]における発現も報告されている。''Arc''発現は発達過程によっても変化することが報告されており、大脳皮質において''Arc''発現は、生後から成熟するにつれて増加し、その後加齢に伴い減少する<ref name=Jenks2017><pubmed>28790183</pubmed></ref><ref name=Lyford1995><pubmed>7857651</pubmed></ref> 。 | |||
神経系以外の組織における''Arc''発現の発達にともなう変化や細胞種に関する情報は少ない。 | 神経系以外の組織における''Arc''発現の発達にともなう変化や細胞種に関する情報は少ない。 | ||
=== 細胞内分布 === | === 細胞内分布 === | ||
神経細胞で発現した''Arc'' | 神経細胞で発現した''Arc'' mRNAの大部分は細胞体にてタンパク質翻訳に用いられた後に速やかに分解されると考えられるが、一部は[[樹状突起]]へと輸送される。樹状突起における''Arc'' mRNAは強いシナプス入力を受けた領域に集積し、樹状突起局所でタンパク質に翻訳される<ref name=Steward1998><pubmed>9808461</pubmed></ref> 。Arcタンパク質の細胞内局在に関しては、細胞分画実験、細胞免疫染色および免疫電顕の結果などから[[後シナプス肥厚部]]に集積していることが示されている。Arcタンパク質は主要な後シナプス肥厚部タンパク質である[[PSD-95]]や[[CaMKIIα]]および[[CaMKIIβ]]と直接結合することが示されており、これらの相互作用はシナプス活動依存的に制御されている可能性が示唆されている<ref name=Fernandez2017><pubmed>29045836</pubmed></ref><ref name=Okuno2012><pubmed>22579289</pubmed></ref> 。Arcタンパク質は細胞体や核においても存在し、これらの細胞区分においても何らかの機能を担っている可能性がある。核局在は神経活動依存的に制御されており[[転写]]制御に関わる可能性も示唆されている<ref name=Korb2013><pubmed>23749147</pubmed></ref> 。 | ||
[[ファイル:Okuno Arc Fig2.png|サムネイル|'''図2. Arcの活動依存的転写機構''']] | [[ファイル:Okuno Arc Fig2.png|サムネイル|'''図2. Arcの活動依存的転写機構''']] | ||
=== 発現調節機構 === | === 発現調節機構 === | ||
神経細胞において''Arc'' | 神経細胞において''Arc'' mRNAの発現はシナプス入力によって巧妙に調節されている。シナプス後部へのシナプス刺激により[[NMDA型グルタミン酸受容体]]と[[電位依存性カルシウムチャネル]]の活性化によって細胞内への[[カルシウム]]流入が生じ、[[カルシウムカルモジュリン依存性タンパク質キナーゼ]]([[CaMK]])経路および[[MEK]]-[[MAP]]キナーゼ経路の活性化を引き起こす<ref name=Kawashima2009><pubmed>19116276</pubmed></ref> 。また、細胞内カルシウムイオン上昇は[[カルシニューリン]](CN)を活性化し、CN依存的経路を活性化する。さらに[[BDNF]]を含む多くの[[神経調節ペプチド]]は''Arc'' mRNAの発現誘導作用を持つ。これら複数の細胞内シグナルは[[核]]へと伝えられ、各シグナル経路に対応する[[転写因子]]および[[転写コファクター]]の活性化を引き起こす('''図2''')。''Arc''遺伝子の転写調節領域には複数の[[プロモーター]]・[[エンハンサー]]が同定されているが、中でも、マウス''Arc''遺伝子の転写開始部位7 kb上流に存在するエンハンサーである[[SARE]] ([[synaptic activity-responsive element]])はArcの神経活動依存的な転写誘導に重要な機能を有する<ref name=Kawashima2009><pubmed>19116276</pubmed></ref> 。SAREには[[CREB]]、[[SRF]]、[[MEF2]]などの主要なシナプス活動依存的な転写因子の結合配列が含まれており、これらの転写因子および[[コアクチベーター]]が協調して、Arcの高いシナプス刺激依存性を実現していると考えられる<ref name=Okuno2011><pubmed>21163309</pubmed></ref> 。 | ||
一過的なシナプス刺激が与えられると核において数分以内に''Arc'' | 一過的なシナプス刺激が与えられると核において数分以内に''Arc'' mRNAの新規転写が開始される。この核内でのmRNA合成は一過的であり、刺激停止後には速やかに完了する。一方、新規合成されたmRNAはその後、細胞質に移動しタンパク合成に供される。このような細胞内mRNA局在の時間的変化を利用して、異なる2時点における神経活動状態を1細胞レベルで可視化する方法が考案されている<ref name=Guzowski1999><pubmed>10570490</pubmed></ref> 。 | ||
== 機能 == | == 機能 == | ||
=== 分子機能 === | === 分子機能 === | ||
Arcタンパク質は様々なシナプス調節に関わる。Arcは[[エンドフィリン]]や[[ダイナミン]]などと複合体を形成し、[[シナプス後部]]において[[AMPA型グルタミン酸受容体]]の[[エンドサイトーシス]]を促進する<ref name=Chowdhury2006><pubmed>17088211</pubmed></ref> 。この性質と活動依存的発現によりArcはシナプス恒常性の分子機構を担う<ref name=Shepherd2006><pubmed>17088213</pubmed></ref> 。すなわち、神経活動の亢進により発現上昇したArcは細胞全体のシナプス強度を下げる方向に働き、逆に活動抑制された神経細胞では''Arc''発現が抑えられるため細胞全体のシナプス強度は強められる。シナプス可塑性に関しては、''Arc''を欠損した海馬神経細胞では[[長期抑圧]] ([[LTD]])が阻害される<ref name=Plath2006><pubmed>17088210</pubmed></ref> 。一方、LTPに関しては当初''Arc''欠損による障害が報告されていたが、最近の研究では''Arc''が欠損されても海馬のLTPの成立は正常である(刺激条件によってはむしろ亢進している)ことが示されている<ref name=Kyrke-Smith2021><pubmed>33833081</pubmed></ref> 。これらの結果と一致して、Arcタンパク質はLTPが誘導されて強化されたシナプス後部には局在せず、活動の低いシナプスに集積するという”[[逆シナプスタグ]]“として働くことが提唱されている<ref name=Okuno2012><pubmed>22579289</pubmed></ref> 。小脳における''Arc''は発達期の[[登上線維]]の刈り込みや[[プルキニエ細胞]]のLTDに関与していることが報告されている<ref name=Mikuni2013><pubmed>23791196</pubmed></ref><ref name=Smith-Hicks2010><pubmed>20694003</pubmed></ref> 。Arcタンパク質は核にも局在しうるが、その役割はほとんど明らかになっていない<ref name=Bloomer2007><pubmed>17466953</pubmed></ref><ref name=Korb2013><pubmed>23749147</pubmed></ref> 。 | |||
=== 個体での機能 === | === 個体での機能 === | ||
''Arc'' | ''Arc''欠損マウスは正常に成長し、交配・繁殖可能である。脳や神経細胞の形態的な異常および[[運動]]や[[感覚]]障害も認められない。一方、神経可塑性が関わる神経機構には広範な異常が報告されている。''Arc''欠損マウスでは[[視覚野]]発達期の[[眼優位可塑性]]に障害がみられる<ref name=McCurry2010><pubmed>20228806</pubmed></ref> 。また、[[モリス水迷路]]などの[[空間学習]]や[[恐怖条件づけ]]による長期恐怖記憶の形成や維持が障害されるが、[[短期記憶]]への影響は少ない<ref name=Plath2006><pubmed>17088210</pubmed></ref> 。大脳発達初期から前脳のみでArcを欠損させた条件的欠損マウスにおいても空間学習や記憶の障害が認められる<ref name=Gao2018><pubmed>30442670</pubmed></ref> 。これらの''Arc''欠損の表現型からは1) 神経回路の成熟過程における''Arc''の重要性や2)長期記憶維持におけるLTPとLTDの協調の重要性などが考察される。なお、成熟後に海馬のみで''Arc''を欠損させたマウスでは空間学習は正常であるが、長期記憶は障害されている<ref name=Gao2018 /> [22]。 | ||
恐怖条件づけ訓練時に''Arc''陽性となる海馬神経細胞を記憶想起テスト時に[[光遺伝学]]を用いて活動抑制すると恐怖記憶想起が障害されることから、''Arc''陽性細胞も''c-fos''陽性細胞と同様に[[記憶痕跡]]([[エングラム]])細胞を構成すると考えられる<ref name=Denny2014><pubmed>24991962</pubmed></ref> 。 | |||
== 疾患とのかかわり == | == 疾患とのかかわり == | ||
ヒトにおいては''Arc'' | ヒトにおいては''Arc''遺伝子の変異と特定の疾患との直接の関連は示されていない。大規模な[[全エクソームシーケンス解析]]の結果からはArcを含むタンパク質複合体 (Arc signaling complex)に関わる遺伝子変異と[[統合失調症]]との関連が示されている<ref name=Fromer2014><pubmed>24463507</pubmed></ref><ref name=Kirov2012><pubmed>22083728</pubmed></ref><ref name=Purcell2014><pubmed>24463508</pubmed></ref> 。 | ||
== 関連語 == | == 関連語 == |