「こだま定位」の版間の差分

ナビゲーションに移動 検索に移動
32行目: 32行目:
</math>
</math>


 コウモリが距離の計測にパルスとエコーの時間差を用いていることは、1973年に[[w:James A. Simmons|James Simmons]]によって詳細に確かめられた<ref name=Simmons1973><pubmed>4738624</pubmed></ref>。Simmonsは左右2つの着地台のうち近い方へと着地するようにオオクビワコウモリ(''Eptesicus fuscus'')を訓練し、コウモリが1 cm程度(約60 µs)の距離の差を弁別できることを示した。さらに、台の上で静止するコウモリが発するこだま定位音声をマイクロホンで取得し、それを電気的に遅延させてコウモリの左右正面に置いたスピーカ―から異なる遅延時間でそれぞれ再生することでエコーと勘違いさせた。左右のスピーカーから呈示されるエコーの遅延時間が短い方を選択させることで、コウモリが100 µs以下の分解能で時間差を識別できることを明らかにし、距離計測の実態は時間差計測であることを明らかにした。
 コウモリが距離の計測にパルスとエコーの時間差を用いていることは、1973年に[[w:James A. Simmons|James Simmons]]によって詳細に確かめられた<ref name=Simmons1973><pubmed>4738624</pubmed></ref>。Simmonsは左右2つの着地台のうち近い方へと着地するようにオオクビワコウモリ(''Eptesicus fuscus'')を訓練し、コウモリが1 cm程度(約60 &mu;s)の距離の差を弁別できることを示した。さらに、台の上で静止するコウモリが発するこだま定位音声をマイクロホンで取得し、それを電気的に遅延させてコウモリの左右正面に置いたスピーカ―から異なる遅延時間でそれぞれ再生することでエコーと勘違いさせた。左右のスピーカーから呈示されるエコーの遅延時間が短い方を選択させることで、コウモリが100 &mu;s以下の分解能で時間差を識別できることを明らかにし、距離計測の実態は時間差計測であることを明らかにした。


 さらに、Simmonsらは次のような実験を行った。左右のスピーカーのうち、一方からは一定の遅延時間で、もう一方からは遅延時間に揺らぎを設けて、エコーを呈示した。コウモリは2つの標的のうち、遅延時間に揺らぎのある方を選択するよう訓練された。その結果、コウモリは10 nsもの揺らぎを検出できることが報告されている<ref name=Simmons1990a><pubmed>2074548</pubmed></ref><ref name=Simmons2004><pubmed>14990794</pubmed></ref>。この揺らぎ検出の異常なまでの時間分解能の高さに関しては、現在までさまざまな反論があり<ref name=Pollak1993><pubmed>8331603</pubmed></ref><ref name=Beedholm2006><pubmed>16395614</pubmed></ref><ref name=Beedholm1998><pubmed>9528108</pubmed></ref><ref name=Goerlitz2010><pubmed>20815481</pubmed></ref><ref name=Goerlitz2018><pubmed>29876084</pubmed></ref>、自然環境における揺らぎの分解能はせいぜい20 µs程度ではないかと推察されている<ref name=Goerlitz2010 />。
 さらに、Simmonsらは次のような実験を行った。左右のスピーカーのうち、一方からは一定の遅延時間で、もう一方からは遅延時間に揺らぎを設けて、エコーを呈示した。コウモリは2つの標的のうち、遅延時間に揺らぎのある方を選択するよう訓練された。その結果、コウモリは10 nsもの揺らぎを検出できることが報告されている<ref name=Simmons1990a><pubmed>2074548</pubmed></ref><ref name=Simmons2004><pubmed>14990794</pubmed></ref>。この揺らぎ検出の異常なまでの時間分解能の高さに関しては、現在までさまざまな反論があり<ref name=Pollak1993><pubmed>8331603</pubmed></ref><ref name=Beedholm2006><pubmed>16395614</pubmed></ref><ref name=Beedholm1998><pubmed>9528108</pubmed></ref><ref name=Goerlitz2010><pubmed>20815481</pubmed></ref><ref name=Goerlitz2018><pubmed>29876084</pubmed></ref>、自然環境における揺らぎの分解能はせいぜい20 &mu;s程度ではないかと推察されている<ref name=Goerlitz2010 />。


 また、複雑な表面を持つ物体は、時間的に重畳したエコーを反射する。例えば、オオクビワコウモリの餌となる飛翔昆虫は羽や頭部といった複数の反射点を持つ。これらは近接して存在するため、100 μs以下の短い時間間隔でエコーを反射する<ref name=Simmons1989><pubmed>2808908</pubmed></ref>。オオクビワコウモリの音声は数msであるため、短い時間間隔での反射音は1つの音に統合され、干渉により時間間隔の逆数に比例する間隔でスペクトルの特定の周波数にノッチを生み出す。オオクビワコウモリの[[下丘]]においては、FM音に反応する神経細胞が、ノッチの周波数と最適周波数が一致する際に反応強度を低下させることでノッチ周波数が表現されており、重畳するFM音の最小の時間分解能は約6 μsと推定されている<ref name=Sanderson2000><pubmed>10758096</pubmed></ref>。さらに、オオクビワコウモリの[[聴覚野]]に存在する遅延時間同調細胞(詳細は後述)は、ある特定の時間差(6-72 μs)に対応するノッチがエコーに存在する際に、最適遅延時間のパルス・エコー刺激に対する反応よりも大きな反応が得られる<ref name=Sanderson2002><pubmed>12037185</pubmed></ref> [15]。単一神経細胞における時間分解能がせいぜい1 ms、さらにこだま定位音声の長さが数msから数十msであることを考えると、高い分解能を示すコウモリの聴覚系での情報処理は非常に興味深い。
 また、複雑な表面を持つ物体は、時間的に重畳したエコーを反射する。例えば、オオクビワコウモリの餌となる飛翔昆虫は羽や頭部といった複数の反射点を持つ。これらは近接して存在するため、100 &mu;s以下の短い時間間隔でエコーを反射する<ref name=Simmons1989><pubmed>2808908</pubmed></ref>。オオクビワコウモリの音声は数 msであるため、短い時間間隔での反射音は1つの音に統合され、干渉により時間間隔の逆数に比例する間隔でスペクトルの特定の周波数にノッチを生み出す。オオクビワコウモリの[[下丘]]においては、FM音に反応する神経細胞が、ノッチの周波数と最適周波数が一致する際に反応強度を低下させることでノッチ周波数が表現されており、重畳するFM音の最小の時間分解能は約6 &mu;sと推定されている<ref name=Sanderson2000><pubmed>10758096</pubmed></ref>。さらに、オオクビワコウモリの[[聴覚野]]に存在する遅延時間同調細胞(詳細は後述)は、ある特定の時間差(6-72 &mu;s)に対応するノッチがエコーに存在する際に、最適遅延時間のパルス・エコー刺激に対する反応よりも大きな反応が得られる<ref name=Sanderson2002><pubmed>12037185</pubmed></ref> [15]。単一神経細胞における時間分解能がせいぜい1 ms、さらにこだま定位音声の長さが数 msから数十 msであることを考えると、高い分解能を示すコウモリの聴覚系での情報処理は非常に興味深い。


 こだま定位による距離計測の神経基盤であると考えられているのは、[[遅延時間同調細胞]](delay-tuned neuron)である。遅延時間同調細胞とは、パルスとエコーのような2音を連続で呈示された際に、2音間の特定の時間差に選択的に反応の促進を示す神経細胞で('''図2''')<ref name=Sullivan1982a><pubmed>7143030</pubmed></ref>
 こだま定位による距離計測の神経基盤であると考えられているのは、[[遅延時間同調細胞]](delay-tuned neuron)である。遅延時間同調細胞とは、パルスとエコーのような2音を連続で呈示された際に、2音間の特定の時間差に選択的に反応の促進を示す神経細胞で('''図2''')<ref name=Sullivan1982a><pubmed>7143030</pubmed></ref>

案内メニュー