16,040
回編集
細 (→V1野における両眼視差の検出) |
細編集の要約なし |
||
67行目: | 67行目: | ||
[[ファイル:Fujita binocular stereopsis Fig4.png|サムネイル|'''図4. 視差選択性細胞の代表的な6タイプ'''<br>左:サルの大脳皮質で両眼視差選択性細胞が確認されている領野。背側視覚経路、腹側視覚経路の多数の領野に存在する。文献<ref name=藤田2023 />より。]] | [[ファイル:Fujita binocular stereopsis Fig4.png|サムネイル|'''図4. 視差選択性細胞の代表的な6タイプ'''<br>左:サルの大脳皮質で両眼視差選択性細胞が確認されている領野。背側視覚経路、腹側視覚経路の多数の領野に存在する。文献<ref name=藤田2023 />より。]] | ||
[[ファイル:Fujita binocular stereopsis Fig5.png|サムネイル|'''図5. 両眼視差を処理する大脳皮質領野'''<br> | [[ファイル:Fujita binocular stereopsis Fig5.png|サムネイル|'''図5. 両眼視差を処理する大脳皮質領野'''<br>サルの大脳皮質で両眼視差選択性細胞が確認されている領野。背側視覚経路、腹側視覚経路の多数の領野に存在する。文献<ref name=Fujita2022>Fujita, I. (2022)<br>Cortical mechanism of binocular stereopsis: How our brain constructs the 3D world. The Japanese Journal of Psychonomic Science, 41: 19-27 [DOI: 10.14947/psychono.41.4|[DOI]] </ref>]] | ||
[[ファイル:Fujita binocular stereopsis Fig5.png|サムネイル|'''図6. ヒトの両眼視差を処理する大脳皮質領野'''<br>ヒトが奥行きのある視覚刺激を見ている時に反応する領野のfMRIデータ。左右の大脳半球を後ろから見たところとその展開図を示す。色のついている場所が反応箇所。異なる色は反応する視野位置の違い(中央円を参照)を示す。図提供:番浩志(情報通信研究機構)]] | |||
[[ファイル:Fujita binocular stereopsis | [[ファイル:Fujita binocular stereopsis Fig7.png|サムネイル|'''図7. 両眼立体視の神経機構''']] | ||
=== V1野における両眼視差の検出 === | === V1野における両眼視差の検出 === | ||
左右の目からの情報の単一神経細胞への収斂は大脳皮質一次視覚野(V1野)で初めて起こり、V1野の多くの神経細胞が両眼視差に感受性を持つ<ref name=Barlow1967><pubmed>6065881</pubmed></ref><ref name=Pettigrew1968><pubmed>5721767</pubmed></ref><ref name=Poggio1985><pubmed>4024459</pubmed></ref>(Barlow, Blakemore, & Pettigrew, 1967; Pettigrew, Nikara, & Bishop, 1968; Poggio, Motter, Squatrito, & Trotter, 1985)。どの奥行き範囲の両眼視差に反応するかは神経細胞により異なり、慣習的に、特定の狭い奥行き範囲にだけ反応する神経細胞(TN、 | 左右の目からの情報の単一神経細胞への収斂は大脳皮質一次視覚野(V1野)で初めて起こり、V1野の多くの神経細胞が両眼視差に感受性を持つ<ref name=Barlow1967><pubmed>6065881</pubmed></ref><ref name=Pettigrew1968><pubmed>5721767</pubmed></ref><ref name=Poggio1985><pubmed>4024459</pubmed></ref>(Barlow, Blakemore, & Pettigrew, 1967; Pettigrew, Nikara, & Bishop, 1968; Poggio, Motter, Squatrito, & Trotter, 1985)。どの奥行き範囲の両眼視差に反応するかは神経細胞により異なり、慣習的に、特定の狭い奥行き範囲にだけ反応する神経細胞(TN、 T0、TF)、注視点より近い奥行きに反応する神経細胞(NE)、注視点より遠い奥行きに反応する神経細胞(FA)、注視面にある刺激で抑制される神経細胞(TI)の6タイプに分類される('''図4''':Poggio, Motter, Squatrito, & Trotter, 1985)<ref name=Poggio1985 />。 | ||
V1野における両眼視差の検出は、両目からの情報が一つの神経細胞に集まる際に、受容野の位置や構造がわずかに異なる神経細胞からの入力が統合されることで実現する。そのメカニズムは視差エネルギーモデルで説明できる<ref name=Ohzawa1990><pubmed>2396096</pubmed></ref>(Ohzawa, DeAngelis, & Freeman, 1991)。視差エネルギーモデルの神経回路が行なっている計算の内容は、受容野内の左右網膜像間の相互相関の算出である(両眼相関計算)。 | V1野における両眼視差の検出は、両目からの情報が一つの神経細胞に集まる際に、受容野の位置や構造がわずかに異なる神経細胞からの入力が統合されることで実現する。そのメカニズムは視差エネルギーモデルで説明できる<ref name=Ohzawa1990><pubmed>2396096</pubmed></ref>(Ohzawa, DeAngelis, & Freeman, 1991)。視差エネルギーモデルの神経回路が行なっている計算の内容は、受容野内の左右網膜像間の相互相関の算出である(両眼相関計算)。 | ||
=== V1野以後の両眼視差情報処理 === | === V1野以後の両眼視差情報処理 === | ||
両眼視差の情報はV1野の後、頭頂連合野に向かう背側視覚経路、側頭連合野に向かう腹側視覚経路(脳科学辞典「視覚経路」参照)の両方の多くの領野で処理される('''図5、6''')。これらの領野で行われている情報処理の内容が明らかになりつつある。 | |||
V1野が検出する両眼視差は絶対視差である<ref name=Cumming1999><pubmed>10377367</pubmed></ref>(Cumming & Parker, 1999)。その後、腹側視覚経路をV2野、 V4野、下側頭葉皮質(IT野)へと進むに連れて、相対視差の情報へと徐々に変換される<ref name=Shimojo2001><pubmed>11606737</pubmed></ref><ref name=Thomas2002><pubmed>11967544</pubmed></ref><ref name=Umeda2007><pubmed>17507498</pubmed></ref><ref name=Janssen1999><pubmed>10393975</pubmed></ref>(Shimojo, Paradiso, & Fujita, 2001; Thomas, Cumming, & Parker, 2002; Umeda, Tanabe, & Fujita, 2007; Janssen, Vogels, & Orban, 1999)。相対視差の分布(視差勾配)は物体面の3次元構造を規定するが、IT野の神経細胞は、凸面、凹面、S字面といった特定の面の構造に、絶対距離によらずに反応する<ref name=Janssen2000><pubmed>10985357</pubmed></ref>(Janssen, Vogels, & Orban, 2000)。さらに、IT細胞の中には特定の3D物体に対して選択的に反応するものもある<ref name=Yamane2008><pubmed>18836443</pubmed></ref>(Yamane, Carlson, Bowman, Wang, & Connor, 2008)。また、相対視差は細かい奥行き知覚に必須の情報であり、V4野とIT野の神経細胞の活動は細かい奥行き知覚の実現に寄与している<ref name=Uka2005><pubmed>16291953</pubmed></ref><ref name=Shiozaki2012><pubmed>22423103</pubmed></ref>(Uka, Tanabe, Watanabe, & Fujita, 2005; Shiozaki, Tanabe, Doi, & Fujita, 2012)。さらに、V4野には、両眼視差情報と網膜像の大きさの情報を統合することで物体の大きさを算出する細胞が存在し、大きさの恒常性のメカニズムの一端を担っている<ref name=Tanaka2015 />(Tanaka & Fujita, | V1野が検出する両眼視差は絶対視差である<ref name=Cumming1999><pubmed>10377367</pubmed></ref>(Cumming & Parker, 1999)。その後、腹側視覚経路をV2野、 V4野、下側頭葉皮質(IT野)へと進むに連れて、相対視差の情報へと徐々に変換される<ref name=Shimojo2001><pubmed>11606737</pubmed></ref><ref name=Thomas2002><pubmed>11967544</pubmed></ref><ref name=Umeda2007><pubmed>17507498</pubmed></ref><ref name=Janssen1999><pubmed>10393975</pubmed></ref>(Shimojo, Paradiso, & Fujita, 2001; Thomas, Cumming, & Parker, 2002; Umeda, Tanabe, & Fujita, 2007; Janssen, Vogels, & Orban, 1999)。相対視差の分布(視差勾配)は物体面の3次元構造を規定するが、IT野の神経細胞は、凸面、凹面、S字面といった特定の面の構造に、絶対距離によらずに反応する<ref name=Janssen2000><pubmed>10985357</pubmed></ref>(Janssen, Vogels, & Orban, 2000)。さらに、IT細胞の中には特定の3D物体に対して選択的に反応するものもある<ref name=Yamane2008><pubmed>18836443</pubmed></ref>(Yamane, Carlson, Bowman, Wang, & Connor, 2008)。また、相対視差は細かい奥行き知覚に必須の情報であり、V4野とIT野の神経細胞の活動は細かい奥行き知覚の実現に寄与している<ref name=Uka2005><pubmed>16291953</pubmed></ref><ref name=Shiozaki2012><pubmed>22423103</pubmed></ref>(Uka, Tanabe, Watanabe, & Fujita, 2005; Shiozaki, Tanabe, Doi, & Fujita, 2012)。さらに、V4野には、両眼視差情報と網膜像の大きさの情報を統合することで物体の大きさを算出する細胞が存在し、大きさの恒常性のメカニズムの一端を担っている<ref name=Tanaka2015 />(Tanaka & Fujita, 2015)('''図7''')。 | ||
一方、背側視覚経路のMT野は絶対視差の情報を伝えている<ref name=Uka2006><pubmed>16793886</pubmed></ref> | 一方、背側視覚経路のMT野は絶対視差の情報を伝えている<ref name=Uka2006><pubmed>16793886</pubmed></ref> | ||
(Uka & DeAngelis, 2006)。相対視差の情報を持たないMT野は粗い奥行き知覚に関与する<ref name=Uka2006 />(Uka & DeAngelis, 2006)。MT野から入力を受けるMST野は両眼視差情報に基づいて反射性輻輳開散運動を制御している<ref name=Masson1997><pubmed>9305842</pubmed></ref>(Masson, Busettini, & Miles, 1997)。背側視覚経路の上位領域であるCIP野には、視差勾配に基づく平面の傾きに反応する細胞があり<ref name=Taira2000><pubmed>10805708</pubmed></ref><ref name=Rosenberg2013><pubmed>24305830</pubmed></ref>(Taira, Tsutsui, Jiang, Yara, & Sakata, 2000; Rosenberg, Cowan, & Angelaki, 2013)、またAIP野には曲面に反応する細胞が存在する<ref name=Theys2012><pubmed>22090458</pubmed></ref>(Theys, Srivastava, van Loon, Goffin, & Janssen, 2012)。CIP細胞の中には、遠近法手がかり<ref name=Tsutsui2001><pubmed>11731542</pubmed></ref>(Tsutsui, Jiang, Yara, Sakata, & Taira, 2001)やテクスチャー手がかりで規定される面の傾きに感受性も持つものがあり、しかも視差勾配にも感受性を有する<ref name=Tsutsui2002><pubmed>12376700</pubmed></ref><ref name=Rosenberg2014><pubmed>25427796</pubmed></ref>(Tsutsui, Jiang, Yara, Sakata, & Taira, 2002; Rosenberg, & Angelaki, 2014)。これらの細胞は、両眼視差と単眼奥行き手がかりを統合し、視覚手がかりの種類によらない面の傾きの情報表現を作り出している(''' | (Uka & DeAngelis, 2006)。相対視差の情報を持たないMT野は粗い奥行き知覚に関与する<ref name=Uka2006 />(Uka & DeAngelis, 2006)。MT野から入力を受けるMST野は両眼視差情報に基づいて反射性輻輳開散運動を制御している<ref name=Masson1997><pubmed>9305842</pubmed></ref>(Masson, Busettini, & Miles, 1997)。背側視覚経路の上位領域であるCIP野には、視差勾配に基づく平面の傾きに反応する細胞があり<ref name=Taira2000><pubmed>10805708</pubmed></ref><ref name=Rosenberg2013><pubmed>24305830</pubmed></ref>(Taira, Tsutsui, Jiang, Yara, & Sakata, 2000; Rosenberg, Cowan, & Angelaki, 2013)、またAIP野には曲面に反応する細胞が存在する<ref name=Theys2012><pubmed>22090458</pubmed></ref>(Theys, Srivastava, van Loon, Goffin, & Janssen, 2012)。CIP細胞の中には、遠近法手がかり<ref name=Tsutsui2001><pubmed>11731542</pubmed></ref>(Tsutsui, Jiang, Yara, Sakata, & Taira, 2001)やテクスチャー手がかりで規定される面の傾きに感受性も持つものがあり、しかも視差勾配にも感受性を有する<ref name=Tsutsui2002><pubmed>12376700</pubmed></ref><ref name=Rosenberg2014><pubmed>25427796</pubmed></ref>(Tsutsui, Jiang, Yara, Sakata, & Taira, 2002; Rosenberg, & Angelaki, 2014)。これらの細胞は、両眼視差と単眼奥行き手がかりを統合し、視覚手がかりの種類によらない面の傾きの情報表現を作り出している('''図7''')。 | ||
=== 両眼対応問題 === | === 両眼対応問題 === | ||
両眼視差の正しい算出には、右目に映る像のどの部分が左目に映る像のどの部分に対応するのかを決める必要がある(両眼対応問題;<ref name=Julesz1960 /><ref name=Marr1979><pubmed>37518</pubmed></ref>Julesz, 1960; Marr & Poggio, 1976)。私たちをとりまく世界は似た視覚特徴を数多く含むことから、これは容易な問題ではない。両目における像の間で無数に可能な局所的な対応の中から、視野全体にわたる首尾一貫した対応(大域対応)を見出し、両眼視差の分布を正しく推定することが、視覚系には求められている。この計算過程は、V1野細胞の両眼相関に対する反応のうち、偽の両眼対応を伝える反応を排除し、真に両眼対応に対する反応のみを残すことで行われる<ref name=Doi2014><pubmed>25360107</pubmed></ref><ref name=Fujita2016><pubmed>27269600</pubmed></ref>(Doi, & Fujita, 2014; Fujita, & Doi, 2016)。 | 両眼視差の正しい算出には、右目に映る像のどの部分が左目に映る像のどの部分に対応するのかを決める必要がある(両眼対応問題;<ref name=Julesz1960 /><ref name=Marr1979><pubmed>37518</pubmed></ref>Julesz, 1960; Marr & Poggio, 1976)。私たちをとりまく世界は似た視覚特徴を数多く含むことから、これは容易な問題ではない。両目における像の間で無数に可能な局所的な対応の中から、視野全体にわたる首尾一貫した対応(大域対応)を見出し、両眼視差の分布を正しく推定することが、視覚系には求められている。この計算過程は、V1野細胞の両眼相関に対する反応のうち、偽の両眼対応を伝える反応を排除し、真に両眼対応に対する反応のみを残すことで行われる<ref name=Doi2014><pubmed>25360107</pubmed></ref><ref name=Fujita2016><pubmed>27269600</pubmed></ref>(Doi, & Fujita, 2014; Fujita, & Doi, 2016)。 | ||
この両眼相関表現から両眼対応表現への変換は、腹側視覚経路のV2野またはV4野でなされている<ref name=Tanabe2004><pubmed>15371518</pubmed></ref><ref name=Abdolrahmaniا2016><pubmed>26843595</pubmed></ref><ref name=Chen2017><pubmed>29180437</pubmed></ref>(Tanabe, Umeda, & Fujita, 2004; Abdolrahmani, Doi, Shiozaki, & Fujita, 2016; Chen, Lu, Tanigawa, & Roe, 2017)。一方、背側視覚経路のMT野やMST野では、両眼対応問題の解決は進んでおらず、両眼相関と両眼対応の中間の表現になっている<ref name=Takemura2001><pubmed>11353039</pubmed></ref><ref name=Krug2004><pubmed>15102899</pubmed></ref><ref name=Yoshioka2021><pubmed>33625356</pubmed></ref>(Takemura, Inoue, Kawano, Quaia, & Miles, 2001; Krug, Cumming, & Parker, 2004; Yoshioka, Doi, Abdolrahmani, & Fujita, 2021)。高次視覚領野では、腹側経路のIT野でも背側経路のAIP野でも、単一細胞レベルで、両眼対応問題を解決した情報を伝える<ref name=Janssen2003><pubmed>12597865</pubmed></ref><ref name=Theys2012><pubmed>22090458</pubmed></ref>(Janssen, Vogels, Liu, & Orban, 2003; Theys, Srivastava, van Loon, Goffin, & Janssen, 2012)(''' | この両眼相関表現から両眼対応表現への変換は、腹側視覚経路のV2野またはV4野でなされている<ref name=Tanabe2004><pubmed>15371518</pubmed></ref><ref name=Abdolrahmaniا2016><pubmed>26843595</pubmed></ref><ref name=Chen2017><pubmed>29180437</pubmed></ref>(Tanabe, Umeda, & Fujita, 2004; Abdolrahmani, Doi, Shiozaki, & Fujita, 2016; Chen, Lu, Tanigawa, & Roe, 2017)。一方、背側視覚経路のMT野やMST野では、両眼対応問題の解決は進んでおらず、両眼相関と両眼対応の中間の表現になっている<ref name=Takemura2001><pubmed>11353039</pubmed></ref><ref name=Krug2004><pubmed>15102899</pubmed></ref><ref name=Yoshioka2021><pubmed>33625356</pubmed></ref>(Takemura, Inoue, Kawano, Quaia, & Miles, 2001; Krug, Cumming, & Parker, 2004; Yoshioka, Doi, Abdolrahmani, & Fujita, 2021)。高次視覚領野では、腹側経路のIT野でも背側経路のAIP野でも、単一細胞レベルで、両眼対応問題を解決した情報を伝える<ref name=Janssen2003><pubmed>12597865</pubmed></ref><ref name=Theys2012><pubmed>22090458</pubmed></ref>(Janssen, Vogels, Liu, & Orban, 2003; Theys, Srivastava, van Loon, Goffin, & Janssen, 2012)('''図7''')。 | ||
=== ヒトにおける両眼立体視の神経機構 === | === ヒトにおける両眼立体視の神経機構 === |