「情報量」の版間の差分

ナビゲーションに移動 検索に移動
1,529 バイト追加 、 2012年4月9日 (月)
編集の要約なし
編集の要約なし
編集の要約なし
34行目: 34行目:
と書き直せることからもわかる。この左辺の第2項に出ているのが条件付きエントロピーで、  
と書き直せることからもわかる。この左辺の第2項に出ているのが条件付きエントロピーで、  


xxxxx
xxxxx  


 と定義される。
 と定義される。  
 
2. なお上の記述ではエントロピーを式(2)で直接定義した。これに対して、どうしてこの式でよいのか、あるいは、他の式で定義するほうがより優れた量を定義できるのではないか、という疑問がでるかもしれない。実は、いくつかの満たすべき性質を最初に決めて(数学的に言えば、いくつかの公理を決めて)、それから式(2)を導出することができる。最初のほうに記述した直観的例(サイコロの例)は、実はこの満たすべき性質の具体例に対応している。導出の仕方にはいくつかあるが、通常、「非負性」(情報量は0か正の数にしたい)、「単調減少性」(確率の低い事象ほど大きくしたい)、「独立加法性」(サイコロの偶奇とそのグループ番号を知るのと、最初から番号を知るのが同じ;独立事象の積による情報量と、その各事象の情報量の和を等しくしたい)、「連続性」(確率の微妙な変化は情報量の連続的な変化に対応するとしたい)という性質を満たすとすると、式(2)の定義が自然に導出される。<br>単位についても触れておこう。たとえば、「長さ」の単位としては、メートルなどがあるが、「情報量」の単位はどうなのか。情報量は、本来は、無次元の量とされている。一方で、式(2)では対数
214

回編集

案内メニュー