214
回編集
Hiroyukinakahara (トーク | 投稿記録) 細編集の要約なし |
Hiroyukinakahara (トーク | 投稿記録) 細編集の要約なし |
||
7行目: | 7行目: | ||
簡単な例— 1 から 6 まで数字がでるサイコロ—でもう少し先まで考えてみることで、情報量が持っていてほしい性質を捉まえてみよう。このサイコロでどの目も確率6分の1で出るはずだが、サイコロをふるまではどの目がでるかはわからない。ひとたびサイコロを振ると、ある目が出る。このサイコロを振る前と振った後では、不確実さが減っている。これをどのように測るかが情報量を定義するときに本質的な課題である。さて6面体のサイコロから、20面体のサイコロに変えたとしよう。この場合もサイコロを振る前と振った後では不確実さが減るわけだが、どちらのサイコロの場合のほうが不確実さは減るだろうか?直観的に言って、出るかもしれない目が多いのだから(20面体では各々の目の出る確率は20分の1であり、6分の1よりも小さいから)、サイコロを振ることで減った不確実さは、20面体のときのほうが大きい。つまり、確率の小さな事象が起きたことを知るときのほうが、不確実さの減り方は大きい、すなわち情報量が大きいとしたい。では、6面体の例に戻って、サイコロを振ったあとで、出た目の数は自分では直接見れないけれども、別の人が出た目を見て、偶数だったか奇数だったか教えてもらえるとしよう。この場合、偶数か奇数かはわかるので、サイコロを振る前よりは不確実さは減ってはいるけれども、出た目を自分で直接見るのに比べれば、その減り方は少ない。さて、偶数か奇数か教えてもらった後で、偶数グループの3つの数字にあらためてA,B、C(奇数グループはC,D,F)と番号づけておいて、その番号を教わったとする。当然のことながら、このA,B,Cのどれかだったかを教われば、もともと1~6の数字のどれが出たのかはわかることになる。この偶奇を教わってからグループの番号を教わることで最終的に減った不確実さは、最初から自分で数字を見るときに減った不確実さと同じであってほしいのは直観的に明らかだろう。 | 簡単な例— 1 から 6 まで数字がでるサイコロ—でもう少し先まで考えてみることで、情報量が持っていてほしい性質を捉まえてみよう。このサイコロでどの目も確率6分の1で出るはずだが、サイコロをふるまではどの目がでるかはわからない。ひとたびサイコロを振ると、ある目が出る。このサイコロを振る前と振った後では、不確実さが減っている。これをどのように測るかが情報量を定義するときに本質的な課題である。さて6面体のサイコロから、20面体のサイコロに変えたとしよう。この場合もサイコロを振る前と振った後では不確実さが減るわけだが、どちらのサイコロの場合のほうが不確実さは減るだろうか?直観的に言って、出るかもしれない目が多いのだから(20面体では各々の目の出る確率は20分の1であり、6分の1よりも小さいから)、サイコロを振ることで減った不確実さは、20面体のときのほうが大きい。つまり、確率の小さな事象が起きたことを知るときのほうが、不確実さの減り方は大きい、すなわち情報量が大きいとしたい。では、6面体の例に戻って、サイコロを振ったあとで、出た目の数は自分では直接見れないけれども、別の人が出た目を見て、偶数だったか奇数だったか教えてもらえるとしよう。この場合、偶数か奇数かはわかるので、サイコロを振る前よりは不確実さは減ってはいるけれども、出た目を自分で直接見るのに比べれば、その減り方は少ない。さて、偶数か奇数か教えてもらった後で、偶数グループの3つの数字にあらためてA,B、C(奇数グループはC,D,F)と番号づけておいて、その番号を教わったとする。当然のことながら、このA,B,Cのどれかだったかを教われば、もともと1~6の数字のどれが出たのかはわかることになる。この偶奇を教わってからグループの番号を教わることで最終的に減った不確実さは、最初から自分で数字を見るときに減った不確実さと同じであってほしいのは直観的に明らかだろう。 | ||
情報量は、これらの直観を反映するように定義されている。確率<span class="texhtml">''p''</span> の事象が起きたことを知らせる情報に含まれる情報量は、 | 情報量は、これらの直観を反映するように定義されている。確率<span class="texhtml">''p''</span> の事象が起きたことを知らせる情報に含まれる情報量は、 | ||
<span class="texhtml"> − log''p''</span> (1) | <span class="texhtml"> − log''p''</span> (1) | ||
19行目: | 19行目: | ||
として測ることができる。この<math>H(p_1,p_2,\ldots,p_n)</math> も情報量と呼ばれる。実は、先ほど定義した式(1)の情報量は、しばしば自己情報量(self information)と呼ばれ、むしろ式(2)の量のほうが情報量として一般的に使われる。また、式(2)の量は別名エントロピー(entropy)とも呼ばれる。以下、(1)と(2)の量を区別をしやすいように、(2)の量をエントロピーと呼んで記述する。 | として測ることができる。この<math>H(p_1,p_2,\ldots,p_n)</math> も情報量と呼ばれる。実は、先ほど定義した式(1)の情報量は、しばしば自己情報量(self information)と呼ばれ、むしろ式(2)の量のほうが情報量として一般的に使われる。また、式(2)の量は別名エントロピー(entropy)とも呼ばれる。以下、(1)と(2)の量を区別をしやすいように、(2)の量をエントロピーと呼んで記述する。 | ||
エントロピーは常に非負 <math>H \ge 0</math> であり、また、それがゼロになるのは、ある一つの事象が確率1でおきる(他の事象は全て確率ゼロ)という場合に限られることは、簡単に証明することができる。また、エントロピーが最大の値を取るのは、事象が<span class="texhtml">''n''</span> コのときには、全ての事象が同じ確率、つまり <span class="texhtml">''p''<sub>''i''</sub> = 1 / ''n''</span> のときで、その場合、<span class="texhtml">''H'' = log''n''</span>となる。<br> | エントロピーは常に非負 <math>H \ge 0</math> であり、また、それがゼロになるのは、ある一つの事象が確率1でおきる(他の事象は全て確率ゼロ)という場合に限られることは、簡単に証明することができる。また、エントロピーが最大の値を取るのは、事象が<span class="texhtml">''n''</span> コのときには、全ての事象が同じ確率、つまり <span class="texhtml">''p''<sub>''i''</sub> = 1 / ''n''</span> のときで、その場合、<span class="texhtml">''H'' = log''n''</span>となる。<br> 6面体のサイコロの例に戻ると、式(2)を使うことで、サイコロを振る前と振った後で、不確実性の減少はどう表現されるだろうか?その減少した量が、サイコロを振ることで得られる情報の量に該当する。その減少の量、<span class="texhtml">''I'' = ''H''(</span>振る前<span class="texhtml">) − ''H''</span>'<span class="texhtml">(</span>振った後<span class="texhtml">)</span>と定義できる。今、サイコロを振る前は、式(2)を用いると<span class="texhtml">''H'' = log6</span> の不確実性となる。サイコロを振った後では、事象が1つに確定する、つまり事象の数は1でその事象の確率が1となるので、式(2)を用いると<span class="texhtml">''H''</span>'<span class="texhtml"> = 0</span>となる。したがって がその情報の量となる。より一般的、ある情報によって得られる情報量は、その不確実性の変化として、 &nbsp;yyyy として定義される。この定義で、自己情報量でなくエントロピーを使っているのには理由がある。サイコロの例などは、起きる事象が一つに確定できるのでわかりやすいが、より一般には、ある情報が与えられた後で、事象が確定できない場合のほうが多い。一例をあげると、翌日の天気を予測するのに、なにも知らないで予測するのと、天気予報の情報を得て予測する、という二つの場合を比べるときに、即ち天気予報の情報量を求めるときに、まだ翌日の天気は分かっていない、つまり自己情報量を用いることはできない。このような自己情報量を用いることができない場合も含めて、情報量を考えるためには、エントロピーの差として情報量を定義するほうが自然なのである。大胆に言えば、以上が「情報量」の本質である。以下、いくつかの但し書きを述べておく。 | ||
6面体のサイコロの例に戻ると、式(2)を使うことで、サイコロを振る前と振った後で、不確実性の減少はどう表現されるだろうか?その減少した量が、サイコロを振ることで得られる情報の量に該当する。その減少の量、<span class="texhtml">''I'' = ''H''(</span>振る前<span class="texhtml">) − ''H''</span>'<span class="texhtml">(</span>振った後<span class="texhtml">)</span>と定義できる。今、サイコロを振る前は、式(2)を用いると<span class="texhtml">''H'' = log6</span> の不確実性となる。サイコロを振った後では、事象が1つに確定する、つまり事象の数は1でその事象の確率が1となるので、式(2)を用いると< | |||
1. 上に記述した情報量の概念を、複数の事象の確率(確率変数)に対して拡張することが一般的に可能である。なかでも、最も基本的なのは、二つの確率に基づく複合事象の関係に対して定義される「相互情報量」と「条件付きエントロピー」の概念である。二つの異なる事象系を考え、一つの系を<math>i=1</math>&hellip<math>,n</math>で番号づけして、各々の事象を<span class="texhtml">''A''<sub>''i''</sub></span> と表し、もう一つの系を<span class="texhtml">''j''= 1,...,''m''</span> で番号づけして、各々の事象を<span class="texhtml">''B''<sub>''j''</sub></span> で表すと複合事象は<span class="texhtml">(''A''<sub>''i''</sub>.''B''<sub>''j''</sub>)の組として与えられる。このとき相互情報量 </span><span class="texhtml">''I''(''A'',''B'')</span>は、 xxxxx となる。この相互情報量は、一方の系の事象を知ることで(たとえば<span class="texhtml">''A''</span>の系について知ることで)、他方の事象について(<span class="texhtml">''B''</span>の系について)どれだけの情報が得られるかを表している。それは、この式が、 YYYY と書き直せることからもわかる。この左辺の第2項に出ているのが条件付きエントロピーで、 xxxxx と定義される。 2. なお上の記述ではエントロピーを式(2)で直接定義した。これに対して、どうしてこの式でよいのか、あるいは、他の式で定義するほうがより優れた量を定義できるのではないか、という疑問がでるかもしれない。実は、いくつかの満たすべき性質を最初に決めて(数学的に言えば、いくつかの公理を決めて)、それから式(2)を導出することができる。最初のほうに記述した直観的例(サイコロの例)は、実はこの満たすべき性質の具体例に対応している。導出の仕方にはいくつかあるが、通常、「非負性」(情報量は0か正の数にしたい)、「単調減少性」(確率の低い事象ほど大きくしたい)、「独立加法性」(サイコロの偶奇とそのグループ番号を知るのと、最初から番号を知るのが同じ;独立事象の積による情報量と、その各事象の情報量の和を等しくしたい)、「連続性」(確率の微妙な変化は情報量の連続的な変化に対応するとしたい)という性質を満たすとすると、式(2)の定義が自然に導出される。<br>単位についても触れておこう。たとえば、「長さ」の単位としては、メートルなどがあるが、「情報量」の単位はどうなのか。情報量は、本来は、無次元の量とされている。一方で、式(2)では対数<span class="texhtml">(log)</span> を使っている。慣用としては、式(2)のように対数の底を書かないときには、その底は、<span class="texhtml">''e''</span> 、つまり対数は自然対数<span class="texhtml">(log<sub>''e'' |
回編集