「スフィンゴミエリン」の版間の差分

 
(同じ利用者による、間の9版が非表示)
1行目: 1行目:
英語名:sphingomyelin 独:sphingomyelin 仏:sphingomyéline
<div align="right"> 
{{box|text= スフィンゴミエリンとは、スフィンゴイド塩基に脂肪酸がアミド結合した構造を持つ、哺乳動物細胞膜の主要構成スフィンゴリン脂質である。}}
<font size="+1">[http://researchmap.jp/Egihsimot 冨重 斉生]、[http://researchmap.jp/read0208938 小林 俊秀]</font><br>
''ストラスブール大学薬学部''<br>
DOI:<selfdoi /> 原稿受付日:2025年4月22日 原稿完成日:2025年5月3日<br>
担当編集委員:[http://researchmap.jp/read0192882 古屋敷 智之](神戸大学大学院医学研究科・医学部 薬理学分野)<br>
</div>
 
英:sphingomyelin 独:Sphingomyelin 仏:sphingomyéline
{{box|text= スフィンゴミエリンとは、スフィンゴイド塩基に脂肪酸がアミド結合した構造を持つ、哺乳動物細胞膜の主要構成スフィンゴリン脂質である。特に神経細胞の軸索を覆うミエリン鞘に豊富に存在し、細胞膜の構造維持やシグナル伝達に重要な役割を果たす。また、スフィンゴミエリンはセラミドやスフィンゴシン-1-リン酸などの生理活性脂質の前駆体としても機能し、細胞の増殖や分化、アポトーシスなどの調節に関与する。その代謝異常は、アルツハイマー病やニーマン・ピック病などの神経疾患との関連が指摘されている。さらに、スフィンゴミエリンはコレステロールとともに脂質ラフトと呼ばれる膜ドメインを形成し、タンパク質の膜分布や細胞機能の制御に寄与している。}}


== スフィンゴミエリンとは ==
== スフィンゴミエリンとは ==
20行目: 27行目:
 同じ極性頭部、ホスホコリンを持つグリセロリン脂質、[[ホスファチジルコリン]](PC)と異なり、スフィンゴミエリンは水素結合供与基(2位のアミノ基と3位の水酸基)を有しており('''図1''')、分子内、分子間で水素結合ネットワークを形成しうる<ref name=Murata2022><pubmed>35791389</pubmed></ref><ref name=Slotte2016><pubmed>26656158</pubmed></ref>。この性質が以下に述べるコレステロールとの相互作用による秩序液体(liquid-ordered (Lo))ドメインの形成において重要である。
 同じ極性頭部、ホスホコリンを持つグリセロリン脂質、[[ホスファチジルコリン]](PC)と異なり、スフィンゴミエリンは水素結合供与基(2位のアミノ基と3位の水酸基)を有しており('''図1''')、分子内、分子間で水素結合ネットワークを形成しうる<ref name=Murata2022><pubmed>35791389</pubmed></ref><ref name=Slotte2016><pubmed>26656158</pubmed></ref>。この性質が以下に述べるコレステロールとの相互作用による秩序液体(liquid-ordered (Lo))ドメインの形成において重要である。


[[ファイル:Kobayashi sphingomyelin Fig2.png|サムネイル|'''図2. スフィンゴミエリン生合成経路'''<br>スフィンゴミエリンとその前駆体、反応を担う酵素とその阻害剤をそれぞれ、黒、青、赤字で示す。]]
[[ファイル:Kobayashi Sphingomyelin Fig2.png|サムネイル|'''図2. スフィンゴミエリン生合成経路'''<br>スフィンゴミエリンとその前駆体、反応を担う酵素とその阻害剤をそれぞれ、黒、青、赤字で示す。]]
 
==  生合成 ==
==  生合成 ==
=== 生合成経路の細胞局在 ===
=== 生合成経路の細胞局在 ===
61行目: 69行目:
== 疾患との関連 ==
== 疾患との関連 ==
=== 神経疾患 ===
=== 神経疾患 ===
==== 髄鞘====
==== シャルコー・マリー・トゥース病 ====
 哺乳動物ミエリン膜では、脂質の含量が約70%と非常に高く<ref name=DeVries1981><pubmed>7240954</pubmed></ref><ref name=Gent1964><pubmed>14238160</pubmed></ref><ref name=Norton1965><pubmed>14313516</pubmed></ref><ref name=Norton1973><pubmed>4754856</pubmed></ref><ref name=Svennerholm1992><pubmed>1390872</pubmed></ref>、特徴的な脂質組成を示す。コレステロールと[[ガラクトシルセラミド]]が、髄鞘において、27-28%、20-24%の割合で存在するのに対し<ref name=Garbay2000><pubmed>10727776</pubmed></ref><ref name=Norton1973><pubmed>4754856</pubmed></ref><ref name=Ozgen2016><pubmed>27141942</pubmed></ref>、スフィンゴミエリンは、中枢、末梢神経系のミエリンにおいて、それぞれ6%、13%を占める<ref name=Poitelon2020><pubmed>32230947</pubmed></ref>。SGMS1あるいはSGMS2の[[ノックアウトマウス]]では、ミエリンに障害は観察されないが、酸性スフィンゴミエリナーゼの遺伝・薬理的阻害は、[[cuprizone]]による[[脱髄]]マウスモデルにおいて、有意なミエリンの回復が見られ、スフィンゴミエリンのミエリン鞘における役割が示唆されている<ref name=Chami2017><pubmed>28582448</pubmed></ref>。
 哺乳動物ミエリン膜では、脂質の含量が約70%と非常に高く<ref name=DeVries1981><pubmed>7240954</pubmed></ref><ref name=Gent1964><pubmed>14238160</pubmed></ref><ref name=Norton1965><pubmed>14313516</pubmed></ref><ref name=Norton1973><pubmed>4754856</pubmed></ref><ref name=Svennerholm1992><pubmed>1390872</pubmed></ref>、特徴的な脂質組成を示す。コレステロールと[[ガラクトシルセラミド]]が、髄鞘において、27-28%、20-24%の割合で存在するのに対し<ref name=Garbay2000><pubmed>10727776</pubmed></ref><ref name=Norton1973><pubmed>4754856</pubmed></ref><ref name=Ozgen2016><pubmed>27141942</pubmed></ref>、スフィンゴミエリンは、中枢、末梢神経系のミエリンにおいて、それぞれ6%、13%を占める<ref name=Poitelon2020><pubmed>32230947</pubmed></ref>。SGMS1あるいはSGMS2の[[ノックアウトマウス]]では、ミエリンに障害は観察されないが、酸性スフィンゴミエリナーゼの遺伝・薬理的阻害は、[[cuprizone]]による[[脱髄]]マウスモデルにおいて、有意なミエリンの回復が見られ、スフィンゴミエリンのミエリン鞘における役割が示唆されている<ref name=Chami2017><pubmed>28582448</pubmed></ref>。


 細胞膜外層のスフィンゴミエリンをフリップし、内層のスフィンゴミエリンプールを生じる[[PMP2]]をコードする遺伝子は、遺伝性の運動・感覚性神経障害、[[シャルコー・マリー・トゥース病]]([[Charcot-Marie-Tooth disease]]; [[CMT]])のうち、脱髄が顕著な[[CMT1]]の原因遺伝子の一つとして知られている。PMP2の点変異I43NはCMT1家系で[[常染色体顕性]]の病因性変異であることが示唆されている<ref name=Gonzaga-Jauregui2015><pubmed>26257172</pubmed></ref><ref name=Hong2016><pubmed>26828946</pubmed></ref>。PMP2 I43Nは野生型タンパク質に比べ、PI(4,5)P2へ高い親和性を示し、スフィンゴミエリンのフリップを亢進する、[[機能獲得]]型変異であることが示唆された<ref name=Abe2021><pubmed>34758297</pubmed></ref>。
==== アルツハイマー病 ====
==== アルツハイマー病 ====
 [[アルツハイマー病]]において、スフィンゴミエリンとコレステロールレベルが、γ―セクレターゼの活性制御を通して、[[アミロイド&beta;前駆体タンパク質]]([[APP]])の[[アミロイド&beta;]]([[A&beta;]])への切断をコントロールすること、また異なる切断産物が代謝酵素の制御を通じて、スフィンゴミエリンとコレステロールレベルを変化させることが報告されている<ref name=Grimm2005><pubmed>16227967</pubmed></ref>。
 [[アルツハイマー病]]において、スフィンゴミエリンとコレステロールレベルが、[[γ―セクレターゼ]]の活性制御を通して、[[アミロイド&beta;前駆体タンパク質]]([[APP]])の[[アミロイド&beta;]]([[A&beta;]])への切断をコントロールすること、また異なる切断産物が代謝酵素の制御を通じて、スフィンゴミエリンとコレステロールレベルを変化させることが報告されている<ref name=Grimm2005><pubmed>16227967</pubmed></ref>。
==== シャルコー・マリー・トゥース病 ====
 
 細胞膜外層のスフィンゴミエリンをフリップし、内層のスフィンゴミエリンプールを生じる[[PMP2]]をコードする遺伝子は、遺伝性の運動・感覚性神経障害、[[シャルコー・マリー・トゥース病]]([[Charcot-Marie-Tooth disease]]; [[CMT]])のうち、脱髄が顕著な[[CMT1]]の原因遺伝子の一つとして知られている。PMP2の点変異I43NはCMT1家系で[[常染色体顕性]]の病因性変異であることが示唆されている<ref name=Gonzaga-Jauregui2015><pubmed>26257172</pubmed></ref><ref name=Hong2016><pubmed>26828946</pubmed></ref>。PMP2 I43Nは野生型タンパク質に比べ、PI(4,5)P2へ高い親和性を示し、スフィンゴミエリンのフリップを亢進する、[[機能獲得]]型変異であることが示唆された<ref name=Abe2021><pubmed>34758297</pubmed></ref>。
==== ニーマン・ピック病 ====
==== ニーマン・ピック病 ====
 [[aSMase]](遺伝子[[SMPD1]])はリソソームにおいて、スフィンゴミエリンの異化を担う[[スフィンゴミエリンホスホジエステラーゼ]]([[sphingomyelin phosphodiesterase]], E.C. 3.1.4.12)であるが、常染色体劣性リソソーム病である[[ニーマン・ピック病]]A型およびB型([[Niemann-Pick disease]] type A/B, NPA/B)の原因遺伝子でもある<ref name=Schuchman2017><pubmed>28164782</pubmed></ref>。A型患者細胞では、酵素活性欠損により<ref name=Brady1966><pubmed>5220952</pubmed></ref>、基質であるスフィンゴミエリンがエンドソーム/リソソームに蓄積する<ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref><ref name=Kiyokawa2004><pubmed>15274631</pubmed></ref><ref name=Yamaji1998><pubmed>9478988</pubmed></ref>。A型の患者は、生後1年以内に[[肝脾腫]]や発育不良を示し、急速に進行する神経変性を伴い、発達遅延が著しく、3年以内に死亡する。B型の患者では、中枢神経系の異常は見られないが、重度の肝脾腫や[[肝不全]]が現れ、血中の中性脂肪や低密度リポタンパク質(LDL) コレステロールレベルが高くなる<ref name=Schuchman2017><pubmed>28164782</pubmed></ref>。当該疾患では、後期エンドソーム・リソソームに局在するコレステロールトランスポーターNPC1、NPC2欠損によるニーマンピック病C型と同様、コレステロールの蓄積が観察されるが、これはaSMase欠損により蓄積したスフィンゴミエリンがコレステロールと相互作用することにより、NPC2によるコレステロール輸送を阻害していると考えられる<ref name=Oninla2014><pubmed>25339683</pubmed></ref>。
 [[aSMase]](遺伝子[[SMPD1]])はリソソームにおいて、スフィンゴミエリンの異化を担う[[スフィンゴミエリンホスホジエステラーゼ]]([[sphingomyelin phosphodiesterase]], E.C. 3.1.4.12)であるが、常染色体劣性リソソーム病である[[ニーマン・ピック病]]A型およびB型([[Niemann-Pick disease]] type A/B, NPA/B)の原因遺伝子でもある<ref name=Schuchman2017><pubmed>28164782</pubmed></ref>。A型患者細胞では、酵素活性欠損により<ref name=Brady1966><pubmed>5220952</pubmed></ref>、基質であるスフィンゴミエリンがエンドソーム/リソソームに蓄積する<ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref><ref name=Kiyokawa2004><pubmed>15274631</pubmed></ref><ref name=Yamaji1998><pubmed>9478988</pubmed></ref>。A型の患者は、生後1年以内に[[肝脾腫]]や発育不良を示し、急速に進行する神経変性を伴い、発達遅延が著しく、3年以内に死亡する。B型の患者では、中枢神経系の異常は見られないが、重度の肝脾腫や[[肝不全]]が現れ、血中の中性脂肪や低密度リポタンパク質(LDL) コレステロールレベルが高くなる<ref name=Schuchman2017><pubmed>28164782</pubmed></ref>。当該疾患では、後期エンドソーム・リソソームに局在するコレステロールトランスポーターNPC1、NPC2欠損によるニーマンピック病C型と同様、コレステロールの蓄積が観察されるが、これはaSMase欠損により蓄積したスフィンゴミエリンがコレステロールと相互作用することにより、NPC2によるコレステロール輸送を阻害していると考えられる<ref name=Oninla2014><pubmed>25339683</pubmed></ref>。
==== パーキンソン病 ====
==== パーキンソン病 ====
 [[パーキンソン病]]において、ニーマンピック病のようなリソソームの脂質蓄積病との関連が示唆されており、リソソームの機能不全が&alpha;-シヌクレイン(&alpha;-Syn)の蓄積を引き起こすことが示唆されているが、発症機序は現段階では不明である<ref name=Signorelli2021><pubmed>34572524</pubmed></ref>。
 [[パーキンソン病]]において、ニーマンピック病のようなリソソームの脂質蓄積病との関連が示唆されており、リソソームの機能不全が&alpha;-シヌクレイン(&alpha;-Syn)の蓄積を引き起こすことが示唆されているが、発症機序は現段階では不明である<ref name=Signorelli2021><pubmed>34572524</pubmed></ref>。
==== 骨疾患====
 
=== 骨疾患===
 SMS2は骨組織で高い発現レベルを示し、そのヘテロ接合変異が、常染色体顕性遺伝疾患、[[骨脆弱性を伴う頭蓋骨のドーナツ状病変]]([[calvarial doughnut lesions with bone fragility]]; [[CDL]]: OMIM #126550)の原因変異として同定されている<ref name=Pekkinen2019><pubmed>30779713</pubmed></ref>。シビアな変異I62SやM64Rをもつ病原性SMS2は小胞体から出ることができず、小胞体でスフィンゴミエリンを合成/蓄積することで、細胞内の脂質プロファイルに変化を生じる<ref name=Sokoya2022><pubmed>36102623</pubmed></ref>。
 SMS2は骨組織で高い発現レベルを示し、そのヘテロ接合変異が、常染色体顕性遺伝疾患、[[骨脆弱性を伴う頭蓋骨のドーナツ状病変]]([[calvarial doughnut lesions with bone fragility]]; [[CDL]]: OMIM #126550)の原因変異として同定されている<ref name=Pekkinen2019><pubmed>30779713</pubmed></ref>。シビアな変異I62SやM64Rをもつ病原性SMS2は小胞体から出ることができず、小胞体でスフィンゴミエリンを合成/蓄積することで、細胞内の脂質プロファイルに変化を生じる<ref name=Sokoya2022><pubmed>36102623</pubmed></ref>。


=== ウイルス感染症 ===
=== ウイルス感染症 ===
 ヒト免疫不全症候群ウイルス1型 (HIV-1, human immunodeficiency virus type-I)は、エンベロープウイルスであり、複製されたウイルスは、感染細胞の細胞膜で形成、出芽し、細胞外へ放出される。ウイルスエンベロープのリピドミクス解析では<ref name=Aloia1993><pubmed>8389472</pubmed></ref><ref name=Brugger2006><pubmed>16481622</pubmed></ref><ref name=Chan2008><pubmed>18799574</pubmed></ref><ref name=Lorizate2013><pubmed>23279151</pubmed></ref><ref name=Mucksch2019><pubmed>31776383</pubmed></ref>、スフィンゴミエリンが感染細胞の細胞膜に比べ濃縮されていることが報告されている<ref name=Chan2008><pubmed>18799574</pubmed></ref><ref name=Lorizate2013><pubmed>23279151</pubmed></ref>114]。これらの結果は、スフィンゴミエリン、コレステロールに特異的に結合するタンパク質(脂質プローブ)と先端顕微鏡技術の使用によって確認され、スフィンゴミエリン やコレステロールが細胞膜上のウイルス形成部位に濃縮されることが観察されている<ref name=Favard2019><pubmed>31616784</pubmed></ref><ref name=Sengupta2019><pubmed>30936472</pubmed></ref><ref name=Tomishige2023><pubmed>37990014</pubmed></ref>。セラミド合成酵素阻害剤fumonisin B1処理は、産生されたウイルスの感染性を減少する<ref name=Brugger2006><pubmed>16481622</pubmed></ref>。宿主由来の中性スフィンゴミエリナーゼ(nSMase2)がウイルスに取り込まれ、その活性がウイルス成熟に重要であることが報告された<ref name=Waheed2023><pubmed>37406093</pubmed></ref><ref name=Yoo2023><pubmed>37406092</pubmed></ref>。nSMase2の薬理的、遺伝的阻害は、ウイルスプロテアーゼ活性低下によるウイルス成熟を阻害し、ウイルスの感染性を低下させる<ref name=Waheed2023><pubmed>37406093</pubmed></ref><ref name=Yoo2023><pubmed>37406092</pubmed></ref>。
==== ヒト免疫不全症候群ウイルス1型 ====
 [[ヒト免疫不全症候群ウイルス1型]] ([[HIV-1]], [[human immunodeficiency virus type-I]])は、[[エンベロープウイルス]]であり、複製されたウイルスは、感染細胞の細胞膜で形成、出芽し、細胞外へ放出される。ウイルスエンベロープの[[リピドミクス]]解析では<ref name=Aloia1993><pubmed>8389472</pubmed></ref><ref name=Brugger2006><pubmed>16481622</pubmed></ref><ref name=Chan2008><pubmed>18799574</pubmed></ref><ref name=Lorizate2013><pubmed>23279151</pubmed></ref><ref name=Mucksch2019><pubmed>31776383</pubmed></ref>、スフィンゴミエリンが感染細胞の細胞膜に比べ濃縮されていることが報告されている<ref name=Chan2008><pubmed>18799574</pubmed></ref><ref name=Lorizate2013><pubmed>23279151</pubmed></ref><ref name=Mucksch2019><pubmed>31776383</pubmed></ref>。これらの結果は、スフィンゴミエリン、コレステロールに特異的に結合するタンパク質(脂質プローブ)と先端顕微鏡技術の使用によって確認され、スフィンゴミエリンやコレステロールが細胞膜上のウイルス形成部位に濃縮されることが観察されている<ref name=Favard2019><pubmed>31616784</pubmed></ref><ref name=Sengupta2019><pubmed>30936472</pubmed></ref><ref name=Tomishige2023><pubmed>37990014</pubmed></ref>。セラミド合成酵素[[阻害剤]][[fumonisin B1]]処理は、産生されたウイルスの感染性を減少する<ref name=Brugger2006><pubmed>16481622</pubmed></ref>。宿主由来の中性スフィンゴミエリナーゼ(nSMase2)がウイルスに取り込まれ、その活性がウイルス成熟に重要であることが報告された<ref name=Waheed2023><pubmed>37406093</pubmed></ref><ref name=Yoo2023><pubmed>37406092</pubmed></ref>。nSMase2の薬理的、遺伝的阻害は、ウイルスプロテアーゼ活性低下によるウイルス成熟を阻害し、ウイルスの感染性を低下させる<ref name=Waheed2023><pubmed>37406093</pubmed></ref><ref name=Yoo2023><pubmed>37406092</pubmed></ref>。


 C型肝炎ウイルス(Hepatitis C virus)のエンベロープのリピドミクス解析によって、スフィンゴミエリン、コレステロールエステルが濃縮されている一方で、PC、ホスファチジルエタノールアミン(PE)、ホスファチジルセリン(PS)、ホスファチジルイノシトール(PI)などが減少していることが明らかになっている<ref name=Merz2011><pubmed>21056986</pubmed></ref>。ウイルス粒子のスフィンゴミエリナーゼ処理は、ウイルスの取り込みを阻害し、ウイルスの感染性を低下する<ref name=Aizaki2008><pubmed>18367533</pubmed></ref>。また、細胞のスフィンゴ脂質生合成の阻害剤処理は、ウイルス産生を阻害する<ref name=Aizaki2008><pubmed>18367533</pubmed></ref>。
==== C型肝炎ウイルス ====
 [[C型肝炎ウイルス]]([[hepatitis C virus]])のエンベロープのリピドミクス解析によって、スフィンゴミエリン、コレステロールエステルが濃縮されている一方で、ホスファチジルコリン、[[ホスファチジルエタノールアミン]](PE)、[[ホスファチジルセリン]](PS)、[[ホスファチジルイノシトール]](PI)などが減少していることが明らかになっている<ref name=Merz2011><pubmed>21056986</pubmed></ref>。ウイルス粒子のスフィンゴミエリナーゼ処理は、ウイルスの取り込みを阻害し、ウイルスの感染性を低下する<ref name=Aizaki2008><pubmed>18367533</pubmed></ref>。また、細胞のスフィンゴ脂質生合成の阻害剤処理は、ウイルス産生を阻害する<ref name=Aizaki2008><pubmed>18367533</pubmed></ref>。


 ウエストナイルウイルス(WNV)のエンベロープには、スフィンゴミエリンが濃縮されている<ref name=Martin-Acebes2014><pubmed>25122799</pubmed></ref>。感染細胞のnSMase阻害剤処理は、WNVの産生を減少する。WNVの感染はaSMase欠損マウスや、ニーマンピックA患者由来の細胞など、スフィンゴミエリンが蓄積していると考えられる細胞で増加する<ref name=Martin-Acebes2016><pubmed>26764042</pubmed></ref>。培養細胞へのスフィンゴミエリンの添加は、WNV感染を増加する一方で、スフィンゴミエリン合成阻害剤処理は、WNV感染を減少する。共焦点顕微鏡観察では、WNV感染細胞においてスフィンゴミエリンとWNV double-strand RNAが共局在する。このようにスフィンゴミエリンは、WNVの異なる二つのステップに重要な役割を果たしている。
==== ウエストナイルウイルス ====
インフルエンザA型ウイルス(IAV)もまた、感染細胞の細胞膜上の脂質マイクロドメイン“脂質ラフト”の感染と出芽への関与が報告されている<ref name=Eierhoff2010><pubmed>20844577</pubmed></ref><ref name=Verma2018><pubmed>30453689</pubmed></ref>。スフィンゴミエリン特異的な関与については、遺伝的あるいは薬理的にスフィンゴミエリンS1を阻害した細胞では、新しいウイルス粒子の成熟と産生が遅れることが報告されている <ref name=Tafesse2013><pubmed>23576732</pubmed></ref>。ウイルス粒子のスフィンゴミエリナーゼ処理は、感染性を低下し、ウイルスの膜への付着と細胞内への取り込みを阻害した。また、細胞のスフィンゴミエリナーゼ処理は、ウイルス感染、取り込みを減少し、細胞への外来性のスフィンゴミエリン添加は感染を亢進した<ref name=Audi2020><pubmed>32425895</pubmed></ref>。またスフィンゴミエリンとコレステロールの複合体に特異的に結合するタンパク質、NakanoriによりMDCK細胞からのウイルスの出芽が抑えられた<ref name=Makino2017><pubmed>27492925</pubmed></ref>
 [[ウエストナイルウイルス]](WNV)のエンベロープには、スフィンゴミエリンが濃縮されている<ref name=Martin-Acebes2014><pubmed>25122799</pubmed></ref>。感染細胞のnSMase阻害剤処理は、ウエストナイルウイルスの産生を減少する。ウエストナイルウイルスの感染はaSMase欠損マウスや、ニーマン・ピックA患者由来の細胞など、スフィンゴミエリンが蓄積していると考えられる細胞で増加する<ref name=Martin-Acebes2016><pubmed>26764042</pubmed></ref>。培養細胞へのスフィンゴミエリンの添加は、WNV感染を増加する一方で、スフィンゴミエリン合成阻害剤処理は、ウエストナイルウイルス感染を減少する。共焦点顕微鏡観察では、ウエストナイルウイルス感染細胞においてスフィンゴミエリンとWNV double-strand RNAが共局在する。このようにスフィンゴミエリンは、ウエストナイルウイルスの異なる二つのステップに重要な役割を果たしている。
 
==== インフルエンザA型ウイルス ====
 [[インフルエンザA型ウイルス]](IAV)もまた、感染細胞の細胞膜上の脂質マイクロドメイン“脂質ラフト”の感染と出芽への関与が報告されている<ref name=Eierhoff2010><pubmed>20844577</pubmed></ref><ref name=Verma2018><pubmed>30453689</pubmed></ref>。スフィンゴミエリン特異的な関与については、遺伝的あるいは薬理的にSMS1を阻害した細胞では、新しいウイルス粒子の成熟と産生が遅れることが報告されている <ref name=Tafesse2013><pubmed>23576732</pubmed></ref>。ウイルス粒子のスフィンゴミエリナーゼ処理は、感染性を低下し、ウイルスの膜への付着と細胞内への取り込みを阻害した。また、細胞のスフィンゴミエリナーゼ処理は、ウイルス感染、取り込みを減少し、細胞への外来性のスフィンゴミエリン添加は感染を亢進した<ref name=Audi2020><pubmed>32425895</pubmed></ref>。またスフィンゴミエリンとコレステロールの複合体に特異的に結合するタンパク質、[[Nakanori]]により[[MDCK細胞]]からのウイルスの出芽が抑えられた<ref name=Makino2017><pubmed>27492925</pubmed></ref>


=== その他 ===
=== その他 ===
 aSMaseと酸性セラミダーゼ(aCDase)が、炎症性サイトカインTNF-やIL-1刺激に応じたIL-6やCC-chemokine ligand5 (CCL5)の産生を正に調節する一方で、スフィンゴシンキナーゼ(SphK2)は負に調節していることが示されている<ref name=Jenkins2011><pubmed>21335555</pubmed></ref>。すなわち、スフィンゴシンがCCL5の産生に重要であることが示唆されている。CCL5の過剰産生は、動脈硬化、喘息やがんを含む疾患に関連付けられている<ref name=Jenkins2011><pubmed>21335555</pubmed></ref>。臨床では、血清中のaSMaseレベルにより全身性の炎症進展のリスクがある患者の死亡率を予見しうることが報告されている<ref name=Kott2014><pubmed>25384060</pubmed></ref>。
 aSMaseと[[酸性セラミダーゼ]]([[aCDase]])が、炎症性[[サイトカイン]][[TNF-&alpha;]]や[[IL-1&beta;]]刺激に応じた[[IL-6]]や[[CC-chemokine ligand 5]] ([[CCL5]])の産生を正に調節する一方で、スフィンゴシンキナーゼ(SphK2)は負に調節していることが示されている<ref name=Jenkins2011><pubmed>21335555</pubmed></ref>。すなわち、スフィンゴシンがCCL5の産生に重要であることが示唆されている。CCL5の過剰産生は、[[動脈硬化]]、[[喘息]]や[[がん]]を含む疾患に関連付けられている<ref name=Jenkins2011><pubmed>21335555</pubmed></ref>。臨床では、血清中のaSMaseレベルにより全身性の炎症進展のリスクがある患者の死亡率を予見しうることが報告されている<ref name=Kott2014><pubmed>25384060</pubmed></ref>。


 Sgms2-ノックアウトマウスでは、スフィンゴミエリンレベルが減少するが、インスリン感受性が亢進し、高脂質食誘導の肥満に耐性を示した<ref name=Li2011><pubmed>21844222</pubmed></ref>。Sgms1-ノックアウトマウスでは、インスリン分泌の減少、白色脂肪組織での酸化ストレス誘導が観察され、白色脂肪細胞の破壊と機能不全を生じた<ref name=Yano2013><pubmed>23593476</pubmed></ref>。
 Sgms2-ノックアウトマウスでは、スフィンゴミエリンレベルが減少するが、インスリン感受性が亢進し、高脂質食誘導の肥満に耐性を示した<ref name=Li2011><pubmed>21844222</pubmed></ref>。Sgms1-ノックアウトマウスでは、インスリン分泌の減少、[[白色脂肪組織]]での[[酸化ストレス]]誘導が観察され、白色脂肪細胞の破壊と機能不全を生じた<ref name=Yano2013><pubmed>23593476</pubmed></ref>。


== 特異的標的毒素とその可視化技術への利用 ==
== 特異的標的毒素とその可視化技術への利用 ==
 スフィンゴミエリンをターゲットとし、多量体形成による細胞膜に孔を形成する毒素が知られている。これらの毒素は、変異導入や全長タンパク質の脂質結合ドメインへの短縮化により単量体・無毒化が図られ、細胞におけるスフィンゴミエリンの分布・動態可視化に用いられている<ref name=Kobayashi2021><pubmed>37366372</pubmed></ref><ref name=Tomishige2021><pubmed>33712198</pubmed></ref>。また、蛍光スフィンゴミエリン 類似体による可視化例についても総説を紹介する<ref name=Jamecna2024><pubmed>38488070</pubmed></ref><ref name=Kishimoto2016><pubmed>26993577</pubmed></ref><ref name=Kol2025><pubmed>39672331</pubmed></ref><ref name=Yamaji-Hasegawa2016><pubmed>26498396</pubmed></ref>。
 スフィンゴミエリンをターゲットとし、多量体形成による細胞膜に孔を形成する[[毒素]]が知られている。これらの毒素は、変異導入や全長タンパク質の脂質結合ドメインへの短縮化により単量体・無毒化が図られ、細胞におけるスフィンゴミエリンの分布・動態可視化に用いられている<ref name=Kobayashi2021><pubmed>37366372</pubmed></ref><ref name=Tomishige2021><pubmed>33712198</pubmed></ref>。また、蛍光スフィンゴミエリン 類似体による可視化例についても総説を紹介する<ref name=Jamecna2024><pubmed>38488070</pubmed></ref><ref name=Kishimoto2016><pubmed>26993577</pubmed></ref><ref name=Kol2025><pubmed>39672331</pubmed></ref><ref name=Yamaji-Hasegawa2016><pubmed>26498396</pubmed></ref>。
=== スフィンゴミエリン特異的毒素 ===
=== スフィンゴミエリン特異的毒素 ===
 ライセニン(lysenin)は、33 kDaのミミズ由来<ref name=Sekizawa1997><pubmed>9210594</pubmed></ref>の孔形成毒素で特異的にスフィンゴミエリン に結合する(KD = 5.3 x 10-9 M)<ref name=Yamaji1998><pubmed>9478988</pubmed></ref>。部分的に共通した他の脂質との結合比較により、ライセニンはセラミドに付加したホスホコリン構造を認識していると推測される<ref name=Kobayashi2021><pubmed>37366372</pubmed></ref>。孔形成毒素としてのライセニンへの耐性を指標として、スフィンゴミエリン 合成に関わる遺伝子のスクリーニングに利用され、セラミド輸送タンパク質CERTを含む、スフィンゴミエリン 合成関連遺伝子の同定に成功している<ref name=Goto2022><pubmed>35800758</pubmed></ref><ref name=Hanada1998><pubmed>9837968</pubmed></ref><ref name=Hanada2003><pubmed>14685229</pubmed></ref><ref name=Mizuike2023><pubmed>37195633</pubmed></ref><ref name=Tomishige2009><pubmed>19005213</pubmed></ref>。ライセニンのC末のbeta-trefoilモチーフがスフィンゴミエリン への結合に関わっており、N末のオリゴマー形成に必要なドメインを欠損した変異体NT-Lys(15.9 kDa)は、スフィンゴミエリン への特異的結合を維持するが(KD = 1.9 x 10-7 M)<ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref>、毒性を欠失しており、蛍光色素や蛍光タンパク質による標識体を用いて、細胞におけるスフィンゴミエリン の局在やダイナミクスが可視化されている。ライセニンは5-6分子のスフィンゴミエリン からなるクラスターに結合し<ref name=Ishitsuka2007><pubmed>17243772</pubmed></ref><ref name=Ishitsuka2004><pubmed>14695271</pubmed></ref><ref name=Makino2015><pubmed>25389132</pubmed></ref>、スフィンゴミエリンとクラスターを形成する糖脂質や、飽和脂肪酸をもつPCの共存によって、その結合が阻害される<ref name=Ishitsuka2004><pubmed>14695271</pubmed></ref><ref name=Makino2015><pubmed>25389132</pubmed></ref>。
==== ライセニン ====
 [[ライセニン]](lysenin)は、33 K<small>D</small>aの[[ミミズ]]由来<ref name=Sekizawa1997><pubmed>9210594</pubmed></ref>の孔形成毒素で特異的にスフィンゴミエリンに結合する(K<small>D</small> = 5.3 x 10<sup>-9</sup> M)<ref name=Yamaji1998><pubmed>9478988</pubmed></ref>。部分的に共通した他の脂質との結合比較により、ライセニンはセラミドに付加したホスホコリン構造を認識していると推測される<ref name=Kobayashi2021><pubmed>37366372</pubmed></ref>。孔形成毒素としてのライセニンへの耐性を指標として、スフィンゴミエリン合成に関わる遺伝子のスクリーニングに利用され、セラミド輸送タンパク質CERTを含む、スフィンゴミエリン合成関連遺伝子の同定に成功している<ref name=Goto2022><pubmed>35800758</pubmed></ref><ref name=Hanada1998><pubmed>9837968</pubmed></ref><ref name=Hanada2003><pubmed>14685229</pubmed></ref><ref name=Mizuike2023><pubmed>37195633</pubmed></ref><ref name=Tomishige2009><pubmed>19005213</pubmed></ref>。ライセニンのC末の&beta;-trefoilモチーフがスフィンゴミエリン への結合に関わっており、N末のオリゴマー形成に必要なドメインを欠損した変異体NT-Lys(15.9 K<small>D</small>a)は、スフィンゴミエリン への特異的結合を維持するが(K<small>D</small> = 1.9 x 10<sup>-7</sup> M)<ref name=Kiyokawa2005><pubmed>15840575</pubmed></ref>、毒性を欠失しており、[[蛍光色素]]や[[蛍光タンパク質]]による標識体を用いて、細胞におけるスフィンゴミエリンの局在やダイナミクスが可視化されている。ライセニンは5-6分子のスフィンゴミエリンからなるクラスターに結合し<ref name=Ishitsuka2007><pubmed>17243772</pubmed></ref><ref name=Ishitsuka2004><pubmed>14695271</pubmed></ref><ref name=Makino2015><pubmed>25389132</pubmed></ref>、スフィンゴミエリンとクラスターを形成する糖脂質や、飽和脂肪酸をもつホスファチジルコリンの共存によって、その結合が阻害される<ref name=Ishitsuka2004><pubmed>14695271</pubmed></ref><ref name=Makino2015><pubmed>25389132</pubmed></ref>。
==== エキナトキシン ====
 [[エキナトキシン]](equinatoxin II, EqtII)は、[[イソギンチャク]]由来の[[アクチノポリン]]ファミリーに属する20 K<small>D</small>aの孔形成毒素であり<ref name=Anderluh1996><pubmed>8645323</pubmed></ref><ref name=Rojko2016><pubmed>26351738</pubmed></ref>、スフィンゴミエリンに特異的に結合する(K<small>D</small> = 7.5 x 10<sup>-9</sup> M)<ref name=Hong2002><pubmed>12198118</pubmed></ref>。EqtII(8-69)は、V8C/K69Cの二重変異を持ち、分子内[[ジスルフィド]]架橋形成により立体構造変換を阻害することで無毒化された変異体であり<ref name=Hong2002><pubmed>12198118</pubmed></ref>、細胞内スフィンゴミエリン可視化に利用された<ref name=Bakrac2008><pubmed>18442982</pubmed></ref>。Eqt-SMは、V22W/Y108Iの二重変異を持つ無毒化変異体でトランスゴルジネットワークから細胞表層へ輸送される、GPI-アンカー型タンパク質を積荷した小胞へのスフィンゴミエリン濃縮を可視化するのに用いられた<ref name=Deng2016><pubmed>27247384</pubmed></ref>。最近では、別の無毒化NT-EqtIIがL26A/P81Aの二重変異の導入により作製され、細胞膜内層のスフィンゴミエリン動態の可視化に使用された<ref name=Mori2024><pubmed>39043900</pubmed></ref>。


 エキナトキシン(equinatoxin II, EqtII)は、イソギンチャク由来のアクチノポリンファミリーに属する20 kDaの孔形成毒素であり<ref name=Anderluh1996><pubmed>8645323</pubmed></ref><ref name=Rojko2016><pubmed>26351738</pubmed></ref>、スフィンゴミエリン に特異的に結合する(KD = 7.5 x 10-9 M)<ref name=Hong2002><pubmed>12198118</pubmed></ref>。EqtII(8-69)は、V8C/K69Cの二重変異を持ち、分子内ジスルフィド架橋形成により立体構造変換を阻害することで無毒化された変異体であり<ref name=Hong2002><pubmed>12198118</pubmed></ref>、細胞内スフィンゴミエリン 可視化に利用された<ref name=Bakrac2008><pubmed>18442982</pubmed></ref>。Eqt-SMは、V22W/Y108Iの二重変異を持つ無毒化変異体でトランスゴルジネットワークから細胞表層へ輸送される、GPI-アンカー型タンパク質を積荷した小胞へのスフィンゴミエリン 濃縮を可視化するのに用いられた<ref name=Deng2016><pubmed>27247384</pubmed></ref>。最近では、別の無毒化NT-EqtIIがL26A/P81Aの二重変異の導入により作製され、細胞膜内層のスフィンゴミエリン動態の可視化に使用された<ref name=Mori2024><pubmed>39043900</pubmed></ref>。
 人工膜を用いて、NT-LysがLoドメインの、EqtIIはLdドメインのスフィンゴミエリンに結合するという差異が観察されている<ref name=Makino2015><pubmed>25389132</pubmed></ref>。これはNT-Lysがクラスター化したスフィンゴミエリン を好むのに対し、EqtIIは密度の低いスフィンゴミエリン に結合することを反映していると推測されている<ref name=Kobayashi2021><pubmed>37366372</pubmed></ref><ref name=Makino2015><pubmed>25389132</pubmed></ref>。
 
 人工膜を用いて、NT-LysがLoドメインの、EqtIIはLdドメインのスフィンゴミエリン に結合するという差異が観察されている<ref name=Makino2015><pubmed>25389132</pubmed></ref>。これはNT-Lysがクラスター化したスフィンゴミエリン を好むのに対し、EqtIIは密度の低いスフィンゴミエリン に結合することを反映していると推測されている<ref name=Kobayashi2021><pubmed>37366372</pubmed></ref><ref name=Makino2015><pubmed>25389132</pubmed></ref>。
=== スフィンゴミエリン /コレステロール複合体特異的毒素・結合タンパク質 ===
=== スフィンゴミエリン /コレステロール複合体特異的毒素・結合タンパク質 ===
 キノコ由来のAegerolysinsは、二つのサブユニットから構成される孔形成毒素の約15 kDaの膜結合サブユニットである。類似したタンパクであるOstreolysin A (OlyA)<ref name=Skocaj2014><pubmed>24664106</pubmed></ref>、pleurotolysin A2 (PlyA2)<ref name=Bhat2013><pubmed>23918047</pubmed></ref>の脂質結合性が解析され、スフィンゴミエリン/コレステロールの複合体に結合することが報告された。OlyAは、コレステロールとの複合体形成時の極性頭部が膜面へ傾いたコンフォメーションのスフィンゴミエリン を認識することが推測されている<ref name=Endapally2019><pubmed>30712872</pubmed></ref>。これらのタンパク質のスフィンゴミエリン/コレステロール複合体に対する結合定数は非常に弱く、求められていないが、CPE/コレステロール複合体には高い親和性で結合する(OlyA, KD = 1.2 x 10-9 M; PlyA2, KD = 1.2 x 10-8 M)<ref name=Bhat2015><pubmed>26060215</pubmed></ref>。類似タンパクであるErylysin A (EryA) はCPE/コレステロールには結合するがスフィンゴミエリン/コレステロールには結合しない<ref name=Bhat2015><pubmed>26060215</pubmed></ref>
==== Aegerolysins ====
 
 [[キノコ]]由来の[[Aegerolysins]]は、二つのサブユニットから構成される孔形成毒素の約15 K<small>D</small>aの膜結合サブユニットである。類似したタンパクである[[Ostreolysin A]] (OlyA)<ref name=Skocaj2014><pubmed>24664106</pubmed></ref>、[[pleurotolysin A2]] (PlyA2)<ref name=Bhat2013><pubmed>23918047</pubmed></ref>の脂質結合性が解析され、スフィンゴミエリン/コレステロールの複合体に結合することが報告された。OlyAは、コレステロールとの複合体形成時の極性頭部が膜面へ傾いたコンフォメーションのスフィンゴミエリンを認識することが推測されている<ref name=Endapally2019><pubmed>30712872</pubmed></ref>。これらのタンパク質のスフィンゴミエリン/コレステロール複合体に対する結合定数は非常に弱く、求められていないが、CPE/コレステロール複合体には高い親和性で結合する(OlyA, K<small>D</small> = 1.2 x 10<sup>-9</sup> M; PlyA2, K<small>D</small> = 1.2 x 10<sup>-8</sup> M)<ref name=Bhat2015><pubmed>26060215</pubmed></ref>。類似タンパクであるErylysin A (EryA) はCPE/コレステロールには結合するがスフィンゴミエリン/コレステロールには結合しない<ref name=Bhat2015><pubmed>26060215</pubmed></ref>
 Nakanoriもまたキノコ由来のスフィンゴミエリン/コレステロール複合体結合タンパク質であるが、他のスフィンゴミエリン やスフィンゴミエリン/コレステロール結合タンパク質とは配列類似性を持たず、毒性を示さない。一方Nakanoriの立体構造はスチコライシン、エキナトキシン等のアクチノポリンと類似しているがN末に30残基のアミノ酸を余分に持っている点が異なっている。Nakanoriはスフィンゴミエリン/コレステロールへの高い親和性を示す(KD = 1.2 x 10-9 M)<ref name=Makino2017><pubmed>27492925</pubmed></ref>。
==== Nakanori ====
 [[Nakanori]]もまたキノコ由来のスフィンゴミエリン/コレステロール複合体結合タンパク質であるが、他のスフィンゴミエリンやスフィンゴミエリン/コレステロール結合タンパク質とは配列類似性を持たず、毒性を示さない。一方Nakanoriの立体構造はスチコライシン、エキナトキシン等のアクチノポリンと類似しているがN末に30残基のアミノ酸を余分に持っている点が異なっている。Nakanoriはスフィンゴミエリン/コレステロールへの高い親和性を示す(K<small>D</small> = 1.2 x 10<sup>-9</sup> M)<ref name=Makino2017><pubmed>27492925</pubmed></ref>。


== 参考文献==
== 参考文献==