「受容野」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
23行目: 23行目:
 古典的受容野を計測するために古くから行われてきた手法は、受容野の大きさと比較して十分小さなスポット光やスリット光などを一定間隔で区分けした視野の様々な位置に一定期間呈示し、その期間に生じた細胞のスパイク数を計測して、細胞がどの部位から入力を受け取るのかを決める方法である。しかし、この手法では、インターバルを挟みながら1回ごとに異なる位置に刺激を呈示するため、計測位置の数が多くなるにつれて、膨大な計測時間が必要となる。  
 古典的受容野を計測するために古くから行われてきた手法は、受容野の大きさと比較して十分小さなスポット光やスリット光などを一定間隔で区分けした視野の様々な位置に一定期間呈示し、その期間に生じた細胞のスパイク数を計測して、細胞がどの部位から入力を受け取るのかを決める方法である。しかし、この手法では、インターバルを挟みながら1回ごとに異なる位置に刺激を呈示するため、計測位置の数が多くなるにつれて、膨大な計測時間が必要となる。  


 この問題を解決し、比較的短時間で受容野構造を詳細に計測する方法が逆相関法(reverse correlation)である(図1)。この方法では、先の方法のように刺激位置ごとに試行を分けるのではなく、10ミリ秒程度のフラッシュ光をさまざまな位置にランダムに連続呈示し、この期間のスパイク活動を連続計測する。受容野構造を求める際には、刺激位置ごとにカウンターを設けておき、測定した各スパイクについて、それが生じた一定時間前(この時間のことを遅延時間とよぶ)に呈示されていた刺激位置のカウンターを1増やすという操作を行う。これを全スパイクについてこの操作を行うことで得られるカウンターの空間マップは、細胞がどの空間位置の刺激にたいして発火しやすいのかを表す受容野構造そのものとなっている。現在この方法は最も精度の高い古典的受容野計測法として広く用いられている。
 この問題を解決し、比較的短時間で受容野構造を詳細に計測する方法が逆相関法(reverse correlation)である。この方法では、先の方法のように刺激位置ごとに試行を分けるのではなく、10ミリ秒程度のフラッシュ光をさまざまな位置にランダムに連続呈示し、この期間のスパイク活動を連続計測する。受容野構造を求める際には、刺激位置ごとにカウンターを設けておき、測定した各スパイクについて、それが生じた一定時間前(この時間のことを遅延時間とよぶ)に呈示されていた刺激位置のカウンターを1増やすという操作を行う。これを全スパイクについてこの操作を行うことで得られるカウンターの空間マップは、細胞がどの空間位置の刺激にたいして発火しやすいのかを表す受容野構造そのものとなっている。現在この方法は最も精度の高い古典的受容野計測法として広く用いられている。


=== 時空間受容野  ===
=== 時空間受容野  ===
37行目: 37行目:
 外界の光を電気信号に変換する視細胞には桿体(rod)、錐体(cone)と2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、サイズは非常に小さく、中心窩(fovea)では視野角にして0.5分程度(1/120度)である。  
 外界の光を電気信号に変換する視細胞には桿体(rod)、錐体(cone)と2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、サイズは非常に小さく、中心窩(fovea)では視野角にして0.5分程度(1/120度)である。  


 視細胞からの入力を受け取る双極細胞(bipolar cell)や次の段階に位置する網膜神経節細胞(retinal ganglion cell)は、それぞれ次の2つのタイプのものがある。第1のものは、受容野の中心領域(center)に明るい光を照射したときに興奮応答し、暗い光を照射したとき(あるいは明るい光をオフしたとき)に抑制応答するもので、ON中心型(ON-center type)と呼ばれる。第2のものは、暗い光に興奮し明るい光に抑制を受けるものでOFF中心型(OFF-center type)とよばれる。いずれのタイプも、中心領域の周囲に光を照射したときには、中心領域と逆の応答をする。すなわち、ON中心型細胞は周辺部(surround)に明るい光を受けたときに抑制を受け、暗い光を受けたときには興奮応答する。またOFF中心型細胞は、周辺部では明るい光に興奮、暗い光に抑制応答がみられる。そこで、前者の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図2A)、逆のタイプをOFF中心ON周辺型(OFF-center ON-surround)とも呼んでいる(図2B)。中心領域と周辺領域は同心円状に配置しており、2つの領域が逆の反応を示すことからこのような受容野構造を中心周辺拮抗型(antagonistic center-surround)とぶ。このような構造をもつ細胞は、図2Cのように2次元のサイン波刺激でテストしたとき、明るい光がON領域に、暗い光がOFF領域に入るときには反応するが(図2C左)、光が一様に入るときには(図2C右)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。
 視細胞からの入力を受け取る双極細胞(bipolar cell)や次の段階に位置する網膜神経節細胞(retinal ganglion cell)は、それぞれ次の2つのタイプのものがある。第1のものは、受容野の中心領域(center)に明るい光を照射したときに興奮応答し、暗い光を照射したとき(あるいは明るい光をオフしたとき)に抑制応答するもので、ON中心型(ON-center type)と呼ばれる。第2のものは、暗い光に興奮し明るい光に抑制を受けるものでOFF中心型(OFF-center type)とよばれる。いずれのタイプも、中心領域の周囲に光を照射したときには、中心領域と逆の応答をする。すなわち、ON中心型細胞は周辺部(surround)に明るい光を受けたときに抑制を受け、暗い光を受けたときには興奮応答する。またOFF中心型細胞は、周辺部では明るい光に興奮、暗い光に抑制応答がみられる。そこで、前者の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図2A)、逆のタイプをOFF中心ON周辺型(OFF-center ON-surround)とも呼んでいる(図2B)。中心領域と周辺領域は同心円状に配置しており、2つの領域が逆の反応を示すことからこのような受容野構造を中心周辺拮抗型(antagonistic center-surround)とぶ。このような構造をもつ細胞は、図2Cのように2次元のサイン波刺激でテストしたとき、明るい光がON領域に、暗い光がOFF領域に入るときには反応するが(図2C上)、光が一様に入るときには(図2C下)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。


<br>  
<br>  
43行目: 43行目:
[[Image:RetinalGanglisonCell.png|432px]]  
[[Image:RetinalGanglisonCell.png|432px]]  


 中心周辺拮抗型の受容野構造は2つのガウス関数の差分であるDOG(Difference of Gaussian)関数で表すことができる(図2A, B下段)。また線形性をもつために、細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、このような近似が十分に成り立つ細胞とそうでない細胞が存在し、前者をX細胞、後者をY細胞という。
 中心周辺拮抗型の受容野構造は2つのガウス関数の差分であるDOG(Difference of Gaussian)関数で表すことができる(図2A, Bの下段)。また線形性をもつために、細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、このような近似が十分に成り立つ細胞とそうでない細胞が存在し、前者をX細胞、後者をY細胞という。


 LGNの受容野構造は網膜神経節細胞とほぼ同一であり、中心周辺の同心円構造をもつ。これは個々のLGNニューロンが1つの網膜神経節細胞からのみ投射を受けることで、その反応特性が形成されているためである。  
 LGNの受容野構造は網膜神経節細胞とほぼ同一であり、中心周辺の同心円構造をもつ。これは個々のLGNニューロンが1つの網膜神経節細胞からのみ投射を受けることで、その反応特性が形成されているためである。  
197

回編集

案内メニュー