「成長円錐」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
=== 周辺部  ===
=== 周辺部  ===


周辺部は扁平の構造で、成長円錐中央から放射状に伸びた細い指のような[[糸状仮足]](filopodia)の間を、水掻きのような薄いシート状の[[葉状仮足]](lamellipodia)が埋めている(図2)。成長円錐の周辺部は[[アクチン]](actin)繊維に保持されているが、糸状仮足と葉状仮足ではアクチン繊維の形状が異なる。糸状仮足内のアクチン繊維は比較的長い束状の直線的な形状であるのに対し、葉状仮足内では短いアクチン繊維が枝分かれした網目状の構造をしている。また、周辺部には比較的動的な[[微小管]](microtuble)末端も見られる<ref><pubmed> 12105186 </pubmed></ref> 。
周辺部は扁平の構造で、成長円錐中央から放射状に伸びた細い指のような[[糸状仮足]](filopodia)の間を、水掻きのような薄いシート状の[[葉状仮足]](lamellipodia)が埋めている(図2)。成長円錐の周辺部は[[アクチン]](actin)繊維に保持されているが、糸状仮足と葉状仮足ではアクチン繊維の形状が異なる。糸状仮足内のアクチン繊維は比較的長い束状の直線的な形状であるのに対し、葉状仮足内では短いアクチン繊維が枝分かれした網目状の構造をしている。また、周辺部には比較的動的な[[微小管]](microtuble)末端も見られる<ref><pubmed> 12105186 </pubmed></ref> 。  


=== 中心部  ===
=== 中心部  ===


中心部は軸索からつながった成長円錐中央部の比較的厚みのある部分で、軸索から伸びている安定な微小管が主な構成成分である(図2)。中心部は神経突起内の微小管束の末端部分に相当し、中心部におけるチューブリンの付加は神経突起の伸長を、脱重合は神経突起の退縮を引き起こす。中心部には比較的安定なアクチン繊維も存在し<ref><pubmed> 14659092 </pubmed></ref>、細胞骨格の他にも[[ミトコンドリア]]や[[小胞体]]などの[[細胞小器官]]、[[膜小胞]]などを多く含んでいる 。 軸索内の微小管は[[Microtubule-associated proteins]](MAPs)により束ねられているが、中心部では先端部がほどけ、一部の微小管は周辺部に向かって放射状に広がっている。
中心部は軸索からつながった成長円錐中央部の比較的厚みのある部分で、軸索から伸びている安定な微小管が主な構成成分である(図2)。中心部は神経突起内の微小管束の末端部分に相当し、中心部におけるチューブリンの付加は神経突起の伸長を、脱重合は神経突起の退縮を引き起こす。中心部には比較的安定なアクチン繊維も存在し<ref><pubmed> 14659092 </pubmed></ref>、細胞骨格の他にも[[ミトコンドリア]]や[[小胞体]]などの[[細胞小器官]]、[[膜小胞]]などを多く含んでいる 。 軸索内の微小管は[[Microtubule-associated proteins]](MAPs)により束ねられているが、中心部では先端部がほどけ、一部の微小管は周辺部に向かって放射状に広がっている。  


===周辺部におけるアクチン繊維と微小管の役割===
=== 周辺部におけるアクチン繊維と微小管の役割 ===


周辺部のアクチン繊維は糸状仮足、葉状仮足とも[[プラス端]]を外側に向けて配向している。先端部での単量体アクチンの重合によるアクチン繊維の伸長は、糸状仮足や葉状仮足を周辺部に向けて拡大させ、成長円錐の形質膜は前方に推し進められる。すなわち、周辺部におけるアクチン繊維の重合-脱重合の制御は成長円錐の運動性を規定する大きな要因の一つである。
周辺部のアクチン繊維は糸状仮足、葉状仮足とも[[プラス端]]を外側に向けて配向している。先端部での単量体アクチンの重合によるアクチン繊維の伸長は、糸状仮足や葉状仮足を周辺部に向けて拡大させ、成長円錐の形質膜は前方に推し進められる。すなわち、周辺部におけるアクチン繊維の重合-脱重合の制御は成長円錐の運動性を規定する大きな要因の一つである。
周辺部の微小管もアクチン繊維と同様にプラス端を外側に向けて配向しており、周辺部への接着分子や膜成分の輸送をガイドする足場として機能すると考えられている。この微小管依存的な小胞輸送経路は成長円錐の旋回運動に重要で、周辺部における微小管の空間的な制御が成長円錐の旋回方向を規定する重要な要因と考えられている。
さらに、周辺部においてアクチン繊維と微小管は他の分子を介して相互作用しており、成長円錐の運動性に重要であると考えられている。アクチン繊維-微小管の結合を媒介する分子を欠く神経細胞では軸索の伸長や走行に異常を示す。


周辺部の微小管もアクチン繊維と同様にプラス端を外側に向けて配向しており、周辺部への接着分子や膜成分の輸送をガイドする足場として機能すると考えられている。この微小管依存的な小胞輸送経路は成長円錐の旋回運動に重要で、周辺部における微小管の空間的な制御が成長円錐の旋回方向を規定する要因の一つと考えられている。


<br>
さらに、周辺部においてアクチン繊維と微小管は両結合性分子を介して相互作用しており、このアクチン繊維-微小管の相互作用も成長円錐の運動性に重要であると考えられている。両結合性分子としてShot、Dpod-1等が同定されており、これらの分子をを欠く神経細胞では軸索の伸長や走行に異常を示す。
 
<br><br>


<br>
<br>
46行目: 47行目:
=== アクチン繊維の後方移動  ===
=== アクチン繊維の後方移動  ===


周辺部に存在するアクチン繊維は、プラス端を成長円錐先端に、[[マイナス端]]を中心部側に向けて規則正しく配置されており、単量体アクチンのアクチン繊維への付加は主に先端部で、アクチン繊維の解離は主に中心部側で起こる。同時にアクチン繊維全体は[[モータータンパク質]]である[[ミオシン(myosin)Ⅰb]]<ref><pubmed> 12356865</pubmed></ref>や[[ミオシンⅡ]]<ref><pubmed> 16501565 </pubmed></ref>。の作用により一定の速度(約5 μm/min)で先端部から中心部へと移動している。このアクチン繊維の後方移動を動力源として成長円錐は前進運動すると考えられる。
周辺部に存在するアクチン繊維は、プラス端を成長円錐先端に、[[マイナス端]]を中心部側に向けて規則正しく配置されており、単量体アクチンのアクチン繊維への付加は主に先端部で、アクチン繊維の解離は主に中心部側で起こる。同時にアクチン繊維全体は[[モータータンパク質]]である[[ミオシン(myosin)Ⅰb]]<ref><pubmed> 12356865</pubmed></ref>や[[ミオシンⅡ]]<ref><pubmed> 16501565 </pubmed></ref>。の作用により一定の速度(約5 μm/min)で先端部から中心部へと移動している。このアクチン繊維の後方移動を動力源として成長円錐は前進運動すると考えられる。  


=== 接着分子  ===
=== 接着分子  ===
58行目: 59行目:
=== 接着分子のリサイクリング  ===
=== 接着分子のリサイクリング  ===


アクチン繊維と結合した接着分子は、アクチンの後方移動に伴って成長円錐中心部へと運ばれてしまう。成長円錐ではその前方移動を恒常的に維持するため、後方へ移動した接着分子を周辺環境から脱着し、再び成長円錐先端部へと輸送し再利用する機構が存在すると考えられている。例えば、アクチン繊維の後方移動により中心部に到達したL1は、[[クラスリン]]依存的[[エンドサイトーシス]]によって膜小胞に取り込まれた後、微小管のガイドによって細胞質内を成長円錐先端部まで輸送され、形質膜に再挿入される<ref><pubmed> 10804209</pubmed></ref><ref><pubmed> 11717353</pubmed></ref>
アクチン繊維と結合した接着分子は、アクチンの後方移動に伴って成長円錐中心部へと運ばれてしまう。成長円錐ではその前方移動を恒常的に維持するため、後方へ移動した接着分子を周辺環境から脱着し、再び成長円錐先端部へと輸送し再利用する機構が存在すると考えられている。例えば、アクチン繊維の後方移動により中心部に到達したL1は、[[クラスリン]]依存的[[エンドサイトーシス]]によって膜小胞に取り込まれた後、微小管のガイドによって細胞質内を成長円錐先端部まで輸送され、形質膜に再挿入される<ref><pubmed> 10804209</pubmed></ref><ref><pubmed> 11717353</pubmed></ref>。このように接着分子は、①成長円錐先端部での基質との接着→②アクチン繊維の後方移動に伴う成長円錐中心部への移動→③基質からの脱着と成長円錐内への取り込み→④先端部への輸送→⑤先端部への再挿入、という過程でリサイクルされており、成長円錐の恒常的な前進運動の分子基盤となっていると考えられている。
このように接着分子は、①成長円錐先端部での基質との接着→②アクチン繊維の後方移動に伴う成長円錐中心部への移動→③基質からの脱着と成長円錐内への取り込み→④先端部への輸送→⑤先端部への再挿入、という過程でリサイクルされており、成長円錐の恒常的な前進運動の分子基盤となっていると考えられている。


 
<br><br>
<br>


== '''成長円錐と軸索ガイダンス'''  ==
== '''成長円錐と軸索ガイダンス'''  ==


神経回路の形成過程において、成長円錐は細胞周辺に存在する軸索ガイダンス因子を検出するアンテナとして機能する。すなわち、成長円錐は軸索ガイダンス因子の空間情報を軸索の伸長方向の制御へと変換する上で極めて重要な構造である。
神経回路の形成過程において、成長円錐は細胞周辺に存在する軸索ガイダンス因子を検出するアンテナとして機能する。すなわち、成長円錐は軸索ガイダンス因子の空間情報を軸索の伸長方向の制御へと変換する上で極めて重要な構造である。  


=== 軸索ガイダンス因子  ===
=== 軸索ガイダンス因子  ===
101行目: 100行目:


上述のように成長円錐の運動性は細胞骨格、接着分子とそのリサイクリングにより規定されるが、成長円錐の前進速度に空間的な非対称性が生じれば、成長円錐は全体として旋回運動を呈することになる。実際に、軸索ガイダンス因子が制御する成長円錐の旋回運動にもRhoファミリー低分子量Gタンパク質、ADF/cofilin、Ena/Vasp、APCなどの細胞骨格制御分子、CalpainやFAK、Srcチロシンキナーゼによる細胞接着の制御が関与することが明らかにされている。
上述のように成長円錐の運動性は細胞骨格、接着分子とそのリサイクリングにより規定されるが、成長円錐の前進速度に空間的な非対称性が生じれば、成長円錐は全体として旋回運動を呈することになる。実際に、軸索ガイダンス因子が制御する成長円錐の旋回運動にもRhoファミリー低分子量Gタンパク質、ADF/cofilin、Ena/Vasp、APCなどの細胞骨格制御分子、CalpainやFAK、Srcチロシンキナーゼによる細胞接着の制御が関与することが明らかにされている。
さらに近年、旋回運動の方向(誘引 or 反発)を決定する分子メカニズムの理解が急速に進んでいる。軸索ガイダンスの細胞内シグナルの研究では、Pooのグループによって開発されたターニングアッセイと呼ばれる実験系が用いられ、この手法は、培養条件下でガラスピペットからガイダンス因子をパルス状に放出し、成長円錐近傍にガイダンス因子の濃度勾配を人工的に作り出し、それに対する成長円錐の挙動を観察するものである。このターニングアッセイを用いた解析では、しばしば特定のシグナルカスケードを遮断すると軸索ガイダンス因子に対する誘引-反発の応答が逆転する現象が見られる。例えば、ネトリン-1及びBDNFの濃度勾配に対する成長円錐の誘引は、cAMPのアンタゴニストであるRp-cAMPsの投与により反発へと逆転する。このことから、成長円錐の旋回方向は様々な細胞内シグナル伝達経路が協調的に働き、複雑なクロストークの結果決定されると予想される。これは、生体内で成長円錐が様々な軸索ガイダンス因子のシグナルを受容しながらそのシグナルを統合し進行する経路を選択することを反映していると考えられる。ここでは、旋回方向を規定する分子メカニズムについて概説する。
 
軸索ガイダンスの細胞内シグナルの研究では、Pooのグループによって開発されたターニングアッセイと呼ばれる実験系が用いられ、この手法は、培養条件下でガラスピペットからガイダンス因子をパルス状に放出し、成長円錐近傍にガイダンス因子の濃度勾配を人工的に作り出し、それに対する成長円錐の挙動を観察するものである。このターニングアッセイを用いた解析では、しばしば特定のシグナルカスケードを遮断すると軸索ガイダンス因子に対する誘引-反発の応答が逆転する現象が見られる。例えば、ネトリン-1及びBDNFの濃度勾配に対する成長円錐の誘引は、cAMPのアンタゴニストであるRp-cAMPsの投与により反発へと逆転する。これは、生体内において、成長円錐は様々な軸索ガイダンス因子のシグナルを受容しながらそのシグナルを統合し進行する経路を選択することを反映しており、成長円錐の旋回方向は様々な細胞内シグナル伝達経路の複雑なクロストークの結果決定されることを示唆する。近年、成長円錐の旋回方向(誘引 or 反発)を決定する分子メカニズムの理解が急速に進んでおり、本項では、旋回方向を規定する分子メカニズムについて概説する。


<br>
<br>
161

回編集

案内メニュー