「コピー数変化」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
3行目: 3行目:
== 背景 ==
== 背景 ==


 従来、核型検査により検出されるヒトゲノムの異常として、染色体の欠失、重複、逆位、転座等が知られていた。ゲノムのコピー数変化・多型(copy number variations: CNVs)という概念は、2004年Iafrate AJとSebatらにより提唱された<ref name=ref1><pubmed></pubmed></ref> <ref name=ref2><pubmed></pubmed></ref>.常染色体上のゲノムDNAは通常1体細胞当たり2コピーであるが、個々人により1コピー以下しか存在しない領域(欠失)、もしくは3コピー以上存在する領域(重複)があり、病的であるもの、病的でないものを含め、それらをCNVと提唱した。さらに、SchererらはCNVを対照ゲノムと比較してコピー数が異なる1 kb以上のDNA断片と定義し、その中でも1%以上の人口で認めるコピー数変化をcopy number polymorphism (CNP)としている<ref name=ref3><pubmed></pubmed></ref>。
 従来、核型検査により検出されるヒトゲノムの異常として、染色体の欠失、重複、逆位、転座等が知られていた。ゲノムのコピー数変化・多型(copy number variations: CNVs)という概念は、2004年Iafrate AJとSebatらにより提唱された<ref name=ref1><pubmed>15273396</pubmed></ref> <ref name=ref2><pubmed>19015223</pubmed></ref>.常染色体上のゲノムDNAは通常1体細胞当たり2コピーであるが、個々人により1コピー以下しか存在しない領域(欠失)、もしくは3コピー以上存在する領域(重複)があり、病的であるもの、病的でないものを含め、それらをCNVと提唱した。さらに、SchererらはCNVを対照ゲノムと比較してコピー数が異なる1 kb以上のDNA断片と定義し、その中でも1%以上の人口で認めるコピー数変化をcopy number polymorphism (CNP)としている<ref name=ref3><pubmed>17597780</pubmed></ref>。


 同時期から、コピー数変化を検出できる様々な解析法が開発され、より高密度の解析が可能となり、当初予想された以上にヒトゲノムにはCNVが存在することが判明した。国際HapMapプロジェクトで用いられたヨーロッパ、アフリカ、アジアの異なる祖先をもつ3系統270名のリンパ芽球細胞(lymphoblastoid cell lines: LCLs)由来のDNAを使用してCNVの検証が行われた。Affymetrix GeneChip Human Mapping 500K early access array (500K EA)と、whole genome TilePath (WGTP) arrayの2種類を用いた検証の結果、合計1447か所のCNVsが検出された。そのゲノムサイズの合計は約360 Mb でヒトゲノムの約12 %に相当した<ref name=ref4><pubmed></pubmed></ref> <ref name=ref5><pubmed></pubmed></ref>。また、2010年のConradらは、41人の女性のLCLs由来のDNAを用いてNimbleGen arrayを用いた解析を行い、11,700か所のCNV (サイズの中央値:2.7 kb)を検出した<ref name=ref6><pubmed></pubmed></ref>。 2006年RedonらによりヒトゲノムCNVカタログが作成され<ref name=ref7><pubmed></pubmed></ref>、現在ではヒト、マウス、ラット、チンパンジー、アカゲザル、キイロショウジョウバエ等でも同様のCNVカタログが作成されている<ref name=ref8><pubmed></pubmed></ref>。
 同時期から、コピー数変化を検出できる様々な解析法が開発され、より高密度の解析が可能となり、当初予想された以上にヒトゲノムにはCNVが存在することが判明した。国際HapMapプロジェクトで用いられたヨーロッパ、アフリカ、アジアの異なる祖先をもつ3系統270名のリンパ芽球細胞(lymphoblastoid cell lines: LCLs)由来のDNAを使用してCNVの検証が行われた。Affymetrix GeneChip Human Mapping 500K early access array (500K EA)と、whole genome TilePath (WGTP) arrayの2種類を用いた検証の結果、合計1447か所のCNVsが検出された。そのゲノムサイズの合計は約360 Mb でヒトゲノムの約12 %に相当した<ref name=ref4><pubmed>17122850</pubmed></ref> <ref name=ref5><pubmed>16418744</pubmed></ref>。また、2010年のConradらは、41人の女性のLCLs由来のDNAを用いてNimbleGen arrayを用いた解析を行い、11,700か所のCNV (サイズの中央値:2.7 kb)を検出した<ref name=ref6><pubmed>19812545</pubmed></ref>。 2006年RedonらによりヒトゲノムCNVカタログが作成され<ref name=ref7><pubmed>20002459</pubmed></ref>、現在ではヒト、マウス、ラット、チンパンジー、アカゲザル、キイロショウジョウバエ等でも同様のCNVカタログが作成されている<ref name=ref8>'''Henrichsen, C.N., E. Chaignat, and A. Reymond'''<br>Copy number variants, diseases and gene expression.<br>''Hum Mol Genet,'' 2009. 18(R1): p. R1-8.</ref>。


== CNVの形成メカニズム ==
== CNVの形成メカニズム ==
13行目: 13行目:
[[image:2NHEJ.png|thumb|300px|'''図2.NAHR''']]
[[image:2NHEJ.png|thumb|300px|'''図2.NAHR''']]


[[image:3FoSTeS.png|thumb|300px|'''図3.FoSTeS'''<br>Wenli Gu et al 2008 より改変引用<ref name=ref11><pubmed></pubmed></ref>]]
[[image:3FoSTeS.png|thumb|300px|'''図3.FoSTeS'''<br>Wenli Gu et al 2008 より改変引用<ref name=ref11><pubmed>19014668</pubmed></ref>]]


 通常1Kb以上の長さで、90%以上の相同性を持つ配列はlow copy repeats (LCRs) またはsegmental duplications (SDs)と定義される<ref name=ref9><pubmed></pubmed></ref>。このような配列はヒトハプロイドゲノムに3.6 %存在するとされる<ref name=ref10><pubmed></pubmed></ref>。特に10 kb以上の長さで97%以上の相同性を持つ場合LCRs領域では、ゲノム不安定性が高まり、組み換えが起こりやすくなるため欠失、重複、挿入、転座、逆位によるゲノム再構成 (genomic rearrangement) が生じやすい。これらのゲノム再編成を生じるメカニズムとして、生体内では主に以下の3つが考えられている<ref name=ref11><pubmed></pubmed></ref>。  
 通常1Kb以上の長さで、90%以上の相同性を持つ配列はlow copy repeats (LCRs) またはsegmental duplications (SDs)と定義される<ref name=ref9><pubmed></pubmed></ref>。このような配列はヒトハプロイドゲノムに3.6 %存在するとされる<ref name=ref10><pubmed></pubmed></ref>。特に10 kb以上の長さで97%以上の相同性を持つ場合LCRs領域では、ゲノム不安定性が高まり、組み換えが起こりやすくなるため欠失、重複、挿入、転座、逆位によるゲノム再構成 (genomic rearrangement) が生じやすい。これらのゲノム再編成を生じるメカニズムとして、生体内では主に以下の3つが考えられている<ref name=ref11><pubmed>19014668</pubmed></ref>。  
#NAHR (non-allelic homologous recombination)<br>
#NAHR (non-allelic homologous recombination)<br>
51行目: 51行目:
== CNVの検索方法 ==
== CNVの検索方法 ==


 正常人に認めるCNVsは[http://projects.tcag.ca/variation/ Toronto Database of Genomic Variants]や[https://humanparalogy.gs.washington edu/structuralvariation/ Human Structural Variation Database] に登録・一般公開されている。また、臨床学的な情報を含む染色体異常は[ https://decipher.sanger.ac.uk/ DECIPHER (Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources)]、[http://umcecaruca01.extern.umcn.nl:8080/ecaruca/ecaruca.jsp/ ECARUCA (European Cytogenetics Association Reigister of Unbalanced Chromosome Aberrations)]、[https://www.iscaconsortium.org/ ISCA(The International Standards for Cytogenomic Arrays (ISCA) Consortium)]などで検索可能である。  
 正常人に認めるCNVsは[http://projects.tcag.ca/variation/ Toronto Database of Genomic Variants]や[http://humanparalogy.gs.washington.edu/structuralvariation/ Human Structural Variation Database] に登録・一般公開されている。また、臨床学的な情報を含む染色体異常は[https://decipher.sanger.ac.uk/ DECIPHER (Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources)]、[http://umcecaruca01.extern.umcn.nl:8080/ecaruca/ecaruca.jsp/ ECARUCA (European Cytogenetics Association Reigister of Unbalanced Chromosome Aberrations)]、[https://www.iscaconsortium.org/ ISCA(The International Standards for Cytogenomic Arrays (ISCA) Consortium)]などで検索可能である。  


(別紙)表1. CNVと疾患関連性の代表例と分子学的メカニズム<ref name=ref15><pubmed></pubmed></ref> <ref name=ref16><pubmed></pubmed></ref>
(別紙)表1. CNVと疾患関連性の代表例と分子学的メカニズム<ref name=ref15><pubmed></pubmed></ref> <ref name=ref16><pubmed></pubmed></ref>

案内メニュー