「受容野」の版間の差分

ナビゲーションに移動 検索に移動
1,056 バイト除去 、 2012年4月26日 (木)
編集の要約なし
編集の要約なし
編集の要約なし
29行目: 29行目:
 外界の光を電気信号に変換する[[視細胞]]には[[桿体]](rod)、[[錐体]](cone)の2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、非常に小さく、霊長類網膜の[[中心窩]](fovea)では[[視角]]にして0.5分程度(1/120度)である。  
 外界の光を電気信号に変換する[[視細胞]]には[[桿体]](rod)、[[錐体]](cone)の2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、非常に小さく、霊長類網膜の[[中心窩]](fovea)では[[視角]]にして0.5分程度(1/120度)である。  


 視細胞からの入力を受け取る[[双極細胞]](bipolar cell)や次の段階に位置する[[網膜神経節細胞]](retinal ganglion cell)には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)の2種類が存在する<ref name="ref2" /><ref><pubmed> 4778132 </pubmed></ref>。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野構造全体を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光では興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野構造をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような構造をもつ細胞は、2次元のサイン波縞刺激にたいして、明るい光がON領域に、暗い光がOFF領域に入るとき(図1C上)には興奮応答するが、光が一様に入るときには(図1C下)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。    
 視細胞からの入力を受け取る[[双極細胞]](bipolar cell)、次の段階に位置する[[網膜神経節細胞]](retinal ganglion cell)、さらに次の段階の視床[[LGN]]の細胞には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)の2種類が存在する<ref name="ref2" /><ref><pubmed> 4778132 </pubmed></ref>。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野構造全体を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光では興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野構造をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野構造をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような構造をもつ細胞は、2次元のサイン波縞刺激にたいして、明るい光がON領域に、暗い光がOFF領域に入るとき(図1C上)には興奮応答するが、光が一様に入るときには(図1C下)ほとんど反応しないことから、明暗コントラストのエッジ幅や位置の情報を伝達していると捉えることができる。    


 中心周辺拮抗型の受容野構造は2つの[[ガウス関数]]の差分であるDOG(Difference of Gaussians)関数で表すことができる(図1A, Bの下段)<ref><pubmed> 5862581 </pubmed></ref>。またこのような受容野をもつ細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、網膜神経節細胞の受容野構造が最も古くから調べられてきたネコでは、このような近似が十分に成り立つ細胞とそうでない細胞が存在しており、前者を[[X細胞]]、後者を[[Y細胞]]という<ref name="enr_rob"><pubmed> 16783910 </pubmed></ref>。  
 中心周辺拮抗型の受容野構造は2つの[[ガウス関数]]の差分であるDOG(Difference of Gaussians)関数で表すことができる(図1A, Bの下段)<ref><pubmed> 5862581 </pubmed></ref>。またこのような受容野をもつ細胞の応答は入力刺激とDOG関数の線形畳み込みで近似できる。ただし、網膜神経節細胞の受容野構造が最も古くから調べられてきたネコでは、このような近似が十分に成り立つ細胞とそうでない細胞が存在しており、前者を[[X細胞]]、後者を[[Y細胞]]という<ref name="enr_rob"><pubmed> 16783910 </pubmed></ref>。  


 霊長類の網膜神経節細胞は、形態学的特徴から、[[パラソル細胞]]と[[ミジェット細胞]]の2種類に分類される。パラソル細胞は大きな、ミジェット細胞は小さなサイズの受容野をもつ<ref><pubmed> 2808778 </pubmed></ref>。これと似た受容野サイズの違い、形態学的特徴の違いはX細胞とY細胞にもみられ<ref name="enr_rob" /> <ref><pubmed> 4422168 </pubmed></ref>、パラソル細胞がY細胞と、X細胞がミジェット細胞と対応する。しかしながら、パラソル細胞とミジェット細胞の受容野はともに強い線形性を示すために、このような対応は十分なわけではない <ref>'''R. Shapley and H. Perry'''<br> Cat and monkey retinal ganglion cells and their visual functional roles. <br>''Trends Neurosci.'': 1986, 9; 229-235.</ref>.
 霊長類網膜神経節細胞は、形態的特徴からミジェット細胞とパラソル細胞にさらに区分されれる。ミジェット細胞は色感受性をもち、しかも受容野中心部と周辺部で異なる光波長(色)に感受性があるものが多い。たとえばある細胞は、受容野中心では緑色に興奮応答を示し、周辺部では赤色に抑制応答を示す。このような受容野の応答様式を[[色対立型]](color opponent type)とよぶ。パラソル細胞とよばれるタイプのものでは、中心部、周辺部では、広い範囲の光波長に感受性がみられ、こちらの受容野タイプは[[広帯域型]](broad-band type)とよぶ <ref><pubmed> 10530750 </pubmed></ref>。  
 
 ミジェット細胞は色感受性をもち、しかも受容野中心部と周辺部で異なる光波長(色)に感受性があるものが多い。たとえばある細胞は、受容野中心では緑色に興奮応答を示し、周辺部では赤色に抑制応答を示す。このような受容野の応答様式を[[色対立型]](color opponent type)とよぶ。一方、パラソル細胞の中心部、周辺部では、広い範囲の光波長に感受性がみられ、こちらの受容野タイプは[[広帯域型]](broad-band type)とよぶ <ref><pubmed> 10530750 </pubmed></ref>。
 
 [[LGN]]の受容野構造は網膜神経節細胞とほぼ同一であり、中心周辺拮抗型の同心円構造をもつ。これは個々の[[LGN]][[ニューロン]]の受容野が、1つの網膜神経節細胞からの入力のみで形成されているためと考えられている <ref><pubmed> 4093882 </pubmed></ref>。  


=== 第一次視覚野(V1野)単純型細胞の受容野構造  ===
=== 第一次視覚野(V1野)単純型細胞の受容野構造  ===
43行目: 39行目:
[[Image:V1SimpleRF2.png|thumb|350px|<i>図2. 単純型細胞の受容野構造</i><br />A. 単純型細胞の受容野構造. ON領域、OFF領域の刺激感受性を白、黒の強さであらわしている。ON領域とOFF領域が隣あって同じ向きに伸びている。1次元のプロファイル(緑: ON領域, 赤: OFF領域)を下段に示す。B. 単純型細胞の受容野構造はガボールフィルターで近似できる。フィルターのパラメータを変化させることで、さまざまな方位、スケール、位相の空間構造を表すことができる。このような多様な構造がV1野の単純型細胞群の受容野にみられる。C. Aで示す受容野構造に最適(上段)および不適(下)な2次元サイン波刺激。縞の明るい部分がON領域、暗い部分がOFF領域ともっともマッチするような空間周波数(周期の逆数で、視野角1度あたりに縞が何周期含まれるのかを表す)、方位、位相をもつ刺激(上段)が最適な刺激となる。一方、これと直交する方位の縞(下段)に細胞は反応しない。]]  
[[Image:V1SimpleRF2.png|thumb|350px|<i>図2. 単純型細胞の受容野構造</i><br />A. 単純型細胞の受容野構造. ON領域、OFF領域の刺激感受性を白、黒の強さであらわしている。ON領域とOFF領域が隣あって同じ向きに伸びている。1次元のプロファイル(緑: ON領域, 赤: OFF領域)を下段に示す。B. 単純型細胞の受容野構造はガボールフィルターで近似できる。フィルターのパラメータを変化させることで、さまざまな方位、スケール、位相の空間構造を表すことができる。このような多様な構造がV1野の単純型細胞群の受容野にみられる。C. Aで示す受容野構造に最適(上段)および不適(下)な2次元サイン波刺激。縞の明るい部分がON領域、暗い部分がOFF領域ともっともマッチするような空間周波数(周期の逆数で、視野角1度あたりに縞が何周期含まれるのかを表す)、方位、位相をもつ刺激(上段)が最適な刺激となる。一方、これと直交する方位の縞(下段)に細胞は反応しない。]]  


 [[網膜神経節細胞]]あるいは[[LGN]]細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、[[第一次視覚野]]の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この[[方位選択性]](orientation selectivity)とよばれる特性をもつ細胞の古典的受容野構造は以下の2つのタイプがある<ref name="ref3"><pubmed> 14403679 </pubmed></ref> <ref name="ref4"><pubmed> 4966457 </pubmed></ref>。第一のタイプでは、明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並ぶ(図2)。このような構造をもつ細胞を[[単純型細胞]](simple cell)とよぶ。単純型細胞の受容野は、受容野の中心が同じ空間軸上に並んだ複数のLGN細胞からの入力が収斂することでできると考えられる<ref name="ref4" /><ref><pubmed> 6875624 </pubmed></ref><ref><pubmed> 2027051 </pubmed></ref>。第2のタイプでは、ON領域とOFF領域が重なり合う。この構造をもつ細胞を[[複雑型細胞]](complex cell)とよぶ(図3)。 複雑型細胞については後述する。
 [[網膜神経節細胞]]あるいは[[LGN]]細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、[[第一次視覚野]]の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この[[方位選択性]](orientation selectivity)とよばれる特性をもつ細胞の古典的受容野構造は以下の2つのタイプがある<ref name="ref3"><pubmed> 14403679 </pubmed></ref> <ref name="ref4"><pubmed> 4966457 </pubmed></ref>。第一のタイプでは、明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並ぶ(図2)。このような構造をもつ細胞を[[単純型細胞]](simple cell)とよぶ。単純型細胞の受容野は、受容野の中心が同じ空間軸上に並んだ複数のLGN細胞からの入力が収斂することでできると考えられる<ref name="ref4" /><ref><pubmed> 6875624 </pubmed></ref><ref><pubmed> 2027051 </pubmed></ref>。第2のタイプでは、ON領域とOFF領域が重なり合う。この構造をもつ細胞を[[複雑型細胞]](complex cell)とよぶ(図3)。


 単純型細胞の古典的受容野では、ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であるが、これらは全てガボールフィルーター(ガボール関数)で近似できる<ref><pubmed> 3437330 </pubmed></ref> 。ガボールフィルターは[[ガウス関数]]とサイン波の積で定義される。ガボールフィルターのパラメーターを変えることで、図2Bに示すサイズ、方位、スケール、そして位相の異なる様々な構造を表すことができる。 <ref><pubmed> 8637596 </pubmed></ref>。  
 単純型細胞の古典的受容野では、ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であるが、これらは全てガボールフィルーター(ガボール関数)で近似できる<ref><pubmed> 3437330 </pubmed></ref> 。ガボールフィルターは[[ガウス関数]]とサイン波の積で定義される。ガボールフィルターのパラメーターを変えることで、図2Bに示すサイズ、方位、スケール、そして位相の異なる様々な構造を表すことができる。 <ref><pubmed> 8637596 </pubmed></ref>。  
197

回編集

案内メニュー