9,444
回編集
Takaonakata (トーク | 投稿記録) 細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
英:cytoskeleton | 英:cytoskeleton | ||
== 概要 == | == 概要 == | ||
真核細胞質内の蛋白性の線維状の構造で、微小管(microtubules)、中間径フィラメント(intermediate filaments)、アクチンフィラメント(actin filaments)の三種類とその結合蛋白からなる。近年、原核細胞にもこれらに相同性のある蛋白質が見つかっている。 | |||
== 歴史 == | == 歴史 == | ||
細胞骨格蛋白の研究は、常に形態学的研究の進展とともにあった。真核細胞の細胞質にはトライトン(Triton)不溶性の線維構造があると分かり、これが“細胞骨格”分画と呼ばれ、電子顕微鏡等による研究が行われるようになった。生物電子顕微鏡のパイオニアであり細胞生物学の創始者のひとりであるK.Porterは臨界点乾燥法を用いて細胞質には複雑な網目状の構造 microtrabecula があるとした。現在はこの説は退けられているが、細胞質内の蛋白性の線維は、微小管(直径25nm)、中間径フィラメント(10nm)、微細線維(マイクロフィラメント)(6nm) の三種類に分類されている。微小管は中空で径も大きく電子顕微鏡像で容易に区別がつく。アクチンフィラメントにはミオシンが結合する。その頭部を細胞骨格試料に加えると、マイクロフィラメントを矢じり状に修飾する。そこでマイクロフィラメントが筋肉で研究されてきたアクチンフィラメントに相当するものであることが分かった(注意深い議論をする場合は、その成分がアクチンであると証明されるまでは、マイクロフィラメントという呼称を用いる)。一方、ミオシン頭部が全く結合しないことで中間径フィラメントが別に存在することが確立した。また、1970年代以降、抗体を用いた蛍光抗体光学顕微鏡法は、細胞骨格蛋白の細胞内の3次元構築を明らかにした。1980年代、急速凍結ディープエッチ法は電子顕微鏡レベルで細胞骨格の三次元的構成を示した。一方、生化学的研究の進展は、その構成蛋白および関連蛋白を明らかにし、それら線維の重合脱重を試験管内で再現した。これに対応し、蛍光標識した構成蛋白とビデオ顕微鏡を用いて生細胞内での細胞骨格成分の動態が観察できるようになった。ビデオ顕微鏡は、この分野の大きな進展である軸索輸送のモーター分子であるキネシンの発見(1985)をもたらした。昔から知られてきたミオシンとダイニンについても、新たな類縁蛋白群が発見された。このモーター分子のアッセイや細胞骨格の重合脱重合のメカニズムの研究に、一分子イメージングなど光学顕微鏡技術の進展が大きく寄与している。 | |||
== 細胞骨格の機能 == | == 細胞骨格の機能 == | ||
細胞の構造を内部から補強する将に“細胞の骨格”としての役割の他、細胞の形態形成、分裂、運動、極性、小胞輸送など様々な細胞内の機能を果たすと考えられている。異なる線維間の相互作用についても古くから興味を持たれてきたが、未解明の点も多い。以下、3線維の特徴を比較するが、それぞれの線維の詳細については、各項を参照されたい。 | |||
=== 微小管(微細管) === | === 微小管(微細管) === | ||
;線維のサイズ:直径25nm | ;線維のサイズ:直径25nm | ||
33行目: | 23行目: | ||
;その他:中空なのでこの中を何かが運ばれるという考えが脳科学の啓蒙書にあるが、根拠が少ない。また、一般の神経細胞では微小管は細胞膜直下には殆どない。 | ;その他:中空なのでこの中を何かが運ばれるという考えが脳科学の啓蒙書にあるが、根拠が少ない。また、一般の神経細胞では微小管は細胞膜直下には殆どない。 | ||
=== 中間径フィラメント === | |||
;線維のサイズ:直径10nm | ;線維のサイズ:直径10nm | ||
;線維の特徴:極性がない。 | ;線維の特徴:極性がない。 | ||
45行目: | 32行目: | ||
;神経での特徴:3つの異なるサブユニットが重合し、フィラメント間に多くの架橋構造を形成するのが特徴的である。H鎖はリン酸化のターゲット分子であり神経細胞では軸索の遠位部で強くリン酸化されていて、リン酸化抗体は軸索のマーカー分子として使われる。細胞の構造的補強以外の機能は不明である。 | ;神経での特徴:3つの異なるサブユニットが重合し、フィラメント間に多くの架橋構造を形成するのが特徴的である。H鎖はリン酸化のターゲット分子であり神経細胞では軸索の遠位部で強くリン酸化されていて、リン酸化抗体は軸索のマーカー分子として使われる。細胞の構造的補強以外の機能は不明である。 | ||
=== アクチンフィラメント(微細繊維、マイクロフィラメント) === | |||
;線維のサイズ:直径7nm | ;線維のサイズ:直径7nm | ||
;線維の特徴:極性あり。細胞膜についているほうが、プラス端。 | ;線維の特徴:極性あり。細胞膜についているほうが、プラス端。 | ||
55行目: | 40行目: | ||
;細胞内分布と機能:細胞運動や移動で重要な役割を果たす。一般的細胞では細胞膜直下に多く、細胞膜が分化した構造、微絨毛や接着結合、分裂時の収縮輪等に多く、培養細胞のストレスファイバーの主成分である。 | ;細胞内分布と機能:細胞運動や移動で重要な役割を果たす。一般的細胞では細胞膜直下に多く、細胞膜が分化した構造、微絨毛や接着結合、分裂時の収縮輪等に多く、培養細胞のストレスファイバーの主成分である。 | ||
;神経細胞での特徴:神経細胞では細胞膜直下のほか、樹状突起のスパインや、PSD(post synaptic density) 、ランヴィエの絞輪、成長円錐に多い。<br> | ;神経細胞での特徴:神経細胞では細胞膜直下のほか、樹状突起のスパインや、PSD(post synaptic density) 、ランヴィエの絞輪、成長円錐に多い。<br> | ||
== 参考文献 == | == 参考文献 == | ||
76行目: | 59行目: | ||
Oxford University Press. <br> | Oxford University Press. <br> | ||
(執筆者:中田隆夫 担当編集委員:河西春郎) |