「血清応答因子」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
[[image:SRF1.jpg|thumb|400px|'''SRF構造'''<br>Protein Data Bank japanウェブページより出典]]
日本語名:血清応答因子 英語名:serum response factor 英略称:SRF  
日本語名:血清応答因子 英語名:serum response factor 英略称:SRF  


 SRFは、MADSボックス(MADS-box)ファミリーに属する転写因子である<ref name=ref1><pubmed>7744019</pubmed></ref>。遺伝子のCC(A/T)<sub>6</sub>GG (CArG) ボックス<ref name=ref2><pubmed>2823106</pubmed></ref>に二量体で結合し<ref name=ref3><pubmed>3203386</pubmed> <ref name=ref4><pubmed>7637780</pubmed></ref> </ref><ref name=1><pubmed></pubmed></ref>、c-''fos''などの転写因子をコードするある種の最初期遺伝子やβ-アクチンなど細胞骨格系遺伝子の発現を制御することが知られている<ref name=ref5><pubmed>15880109</pubmed></ref>。SRFは、中胚葉形成などの胚発生<ref name=ref6><pubmed>9799237</pubmed></ref>、筋分化<ref name=ref7><pubmed>20498652</pubmed></ref>、心機能<ref name=ref7><pubmed>20498652</pubmed></ref>、免疫系細胞の成熟<ref name=ref7><pubmed>20498652</pubmed></ref>など多彩な生命現象に関与するとの指摘がある。中枢神経系においては、海馬の神経回路形成<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref>、樹状突起や軸索形態<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref><ref name=ref10><pubmed>20123976</pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、シナプス機能<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref12><pubmed>16600861</pubmed></ref>への関与、海馬や大脳皮質の層構造形成<ref name=ref10>20123976<pubmed></pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、神経細胞移動<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref13><pubmed>15837932</pubmed></ref>、末梢神経系においては後根神経節の軸索分岐形成や伸長への関与<ref name=ref14><pubmed>18498735</pubmed></ref>が指摘されている。  
 SRFは、MADSボックス(MADS-box)ファミリーに属する転写因子である<ref name=ref1><pubmed>7744019</pubmed></ref>。遺伝子のCC(A/T)<sub>6</sub>GG (CArG) ボックス<ref name=ref2><pubmed>2823106</pubmed></ref>に二量体で結合し<ref name=ref3><pubmed>3203386</pubmed></ref> <ref name=ref4><pubmed>7637780</pubmed></ref>、c-''fos''などの転写因子をコードするある種の最初期遺伝子やβ-アクチンなど細胞骨格系遺伝子の発現を制御することが知られている<ref name=ref5><pubmed>15880109</pubmed></ref>。SRFは、中胚葉形成などの胚発生<ref name=ref6><pubmed>9799237</pubmed></ref>、筋分化<ref name=ref7><pubmed>20498652</pubmed></ref>、心機能<ref name=ref7><pubmed>20498652</pubmed></ref>、免疫系細胞の成熟<ref name=ref7><pubmed>20498652</pubmed></ref>など多彩な生命現象に関与するとの指摘がある。中枢神経系においては、海馬の神経回路形成<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref>、樹状突起や軸索形態<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref><ref name=ref10><pubmed>20123976</pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、シナプス機能<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref12><pubmed>16600861</pubmed></ref>への関与、海馬や大脳皮質の層構造形成<ref name=ref10>20123976<pubmed></pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、神経細胞移動<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref13><pubmed>15837932</pubmed></ref>、末梢神経系においては後根神経節の軸索分岐形成や伸長への関与<ref name=ref14><pubmed>18498735</pubmed></ref>が指摘されている。  


== 歴史 ==
== 歴史 ==
8行目: 10行目:


== 細胞内制御機構 ==
== 細胞内制御機構 ==
[[image:SRF2.jpg|thumb|400px|'''図. SRF細胞内制御機構のモデル(主に細胞株中心の解析結果)''']]


 SRFは、血清<ref name=ref15><pubmed>3524858</pubmed></ref>、神経成長因子(nerve growth factor, NGF)<ref name=ref14><pubmed>18498735</pubmed></ref>, 脳由来神経栄養因子(brain-derived neurotrophic factor, BDNF)<ref name=ref19><pubmed>17005865</pubmed></ref>などの神経栄養因子、 (transforming growth factor- β, TGF-β)スーパーファミリー<ref name=ref20><pubmed>20709749</pubmed></ref>、リゾホスファチジン酸(lysophosphatidic acid, LPA)<ref name=ref21><pubmed>17035020</pubmed></ref>などの細胞外リガンドによって制御される。SRF制御のための細胞内情報伝達は、MAPキナーゼ伝達経路<ref name=ref21><pubmed></pubmed></ref>と低分子量Gタンパク質Rho伝達経路の大きく2つがよく知られている(図)<ref name=ref21><pubmed>17035020</pubmed></ref>。情報の最終到達点は、SRFによる標的遺伝子の制御であるが、SRFに結合して転写を制御するSRFコファクター(後述)が細胞内情報の統合や標的遺伝子の決定を行う可能性が指摘されている<ref name=ref21><pubmed>17035020</pubmed></ref>。  
 SRFは、血清<ref name=ref15><pubmed>3524858</pubmed></ref>、神経成長因子(nerve growth factor, NGF)<ref name=ref14><pubmed>18498735</pubmed></ref>, 脳由来神経栄養因子(brain-derived neurotrophic factor, BDNF)<ref name=ref19><pubmed>17005865</pubmed></ref>などの神経栄養因子、 (transforming growth factor- β, TGF-β)スーパーファミリー<ref name=ref20><pubmed>20709749</pubmed></ref>、リゾホスファチジン酸(lysophosphatidic acid, LPA)<ref name=ref21><pubmed>17035020</pubmed></ref>などの細胞外リガンドによって制御される。SRF制御のための細胞内情報伝達は、MAPキナーゼ伝達経路<ref name=ref21><pubmed></pubmed></ref>と低分子量Gタンパク質Rho伝達経路の大きく2つがよく知られている(図)<ref name=ref21><pubmed>17035020</pubmed></ref>。情報の最終到達点は、SRFによる標的遺伝子の制御であるが、SRFに結合して転写を制御するSRFコファクター(後述)が細胞内情報の統合や標的遺伝子の決定を行う可能性が指摘されている<ref name=ref21><pubmed>17035020</pubmed></ref>。  
13行目: 17行目:
== SRFコファクター ==
== SRFコファクター ==


=== Ternary complex factor (TCF)(図) ===
=== Ternary complex factor (TCF) === (図)


 TCFは、Ets-like transcription factor (Elk-1)、SRF accessory protein 1 (SAP-1)/Elk-4、New ets transcription factor (Net)/Ets-related protein(ERP)/SAP-2/Elk-3の3つが知られている<ref name=ref22><pubmed>14693367</pubmed></ref>。TCFはE-twenty six (ETS)転写ファミリー(ETS transcription factor family)に属し、DNA結合ドメインであるETSドメインを持つ<ref name=ref22><pubmed>14693367</pubmed></ref>。
 TCFは、Ets-like transcription factor (Elk-1)、SRF accessory protein 1 (SAP-1)/Elk-4、New ets transcription factor (Net)/Ets-related protein(ERP)/SAP-2/Elk-3の3つが知られている<ref name=ref22><pubmed>14693367</pubmed></ref>。TCFはE-twenty six (ETS)転写ファミリー(ETS transcription factor family)に属し、DNA結合ドメインであるETSドメインを持つ<ref name=ref22><pubmed>14693367</pubmed></ref>。
19行目: 23行目:
 TCFは、CArGボックス近傍のDNA配列(GGAA/T)とSRFに結合して三量体を形成し、下流遺伝子の発現を制御する<ref name=ref22><pubmed>14693367</pubmed></ref>。またMAPキナーゼによりリン酸化されて活性調節される<ref name=ref22><pubmed>14693367</pubmed></ref>。c-fos遺伝子の転写調節に重要な因子として同定され、解析が進んだ<ref name=ref23><pubmed>2492906</pubmed></ref>。しかし、TCFによる転写の正負制御はシグナル、遺伝子、細胞の種類によって異なると考えられる。  
 TCFは、CArGボックス近傍のDNA配列(GGAA/T)とSRFに結合して三量体を形成し、下流遺伝子の発現を制御する<ref name=ref22><pubmed>14693367</pubmed></ref>。またMAPキナーゼによりリン酸化されて活性調節される<ref name=ref22><pubmed>14693367</pubmed></ref>。c-fos遺伝子の転写調節に重要な因子として同定され、解析が進んだ<ref name=ref23><pubmed>2492906</pubmed></ref>。しかし、TCFによる転写の正負制御はシグナル、遺伝子、細胞の種類によって異なると考えられる。  


=== MyocardinとMKL/MRTF(図)===
=== MyocardinとMKL/MRTF === (図)


 Myocardinとmegakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF)もSRFに結合するコファクターである<ref name=ref18><pubmed>20414257</pubmed></ref>。MyocardinとMKL/MRTFは、ドメイン構造が類似しているが、アクチン動態のシグナルに対しては応答性が異なる<ref name=ref24><pubmed>18025109</pubmed></ref>。主にNIH3T3細胞等の非神経細胞において、MKL/MRTFはRhoシグナル活性化によるアクチン細胞骨格の再編成によってG-アクチンから解離し、核移行して下流遺伝子の発現を制御するモデルが提唱されている(図)<ref name=ref25><pubmed>12732141</pubmed></ref>。一方、myocardinはRhoシグナルに対する応答性は低いとされている<ref name=ref24><pubmed>18025109</pubmed></ref>。MKL/MRTFは、異なる遺伝子にコードされるMKL1/MRTF-A (別名megakaryocytic acute leukemia (MAL), basic, SAP, and coiled-coil domain (BSAC))とMKL2/MRTF-B (別名MAL16)の2種類が知られている<ref name=ref21><pubmed>17035020</pubmed></ref>。Myocardinは、心臓、骨格筋に高発現し、平滑筋関連遺伝子の発現を制御する<ref name=ref26><pubmed>12756293</pubmed></ref>が、MKL1/MRTF-Aは、精巣と脳、MKL/MRTF-Bは脳に高い発現が認められる<ref name=ref20><pubmed>20709749</pubmed></ref>。MKL/MRTFによる転写の正負制御もシグナル、遺伝子、細胞の種類によって異なっていると考えられる。  
 Myocardinとmegakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF)もSRFに結合するコファクターである<ref name=ref18><pubmed>20414257</pubmed></ref>。MyocardinとMKL/MRTFは、ドメイン構造が類似しているが、アクチン動態のシグナルに対しては応答性が異なる<ref name=ref24><pubmed>18025109</pubmed></ref>。主にNIH3T3細胞等の非神経細胞において、MKL/MRTFはRhoシグナル活性化によるアクチン細胞骨格の再編成によってG-アクチンから解離し、核移行して下流遺伝子の発現を制御するモデルが提唱されている(図)<ref name=ref25><pubmed>12732141</pubmed></ref>。一方、myocardinはRhoシグナルに対する応答性は低いとされている<ref name=ref24><pubmed>18025109</pubmed></ref>。MKL/MRTFは、異なる遺伝子にコードされるMKL1/MRTF-A (別名megakaryocytic acute leukemia (MAL), basic, SAP, and coiled-coil domain (BSAC))とMKL2/MRTF-B (別名MAL16)の2種類が知られている<ref name=ref21><pubmed>17035020</pubmed></ref>。Myocardinは、心臓、骨格筋に高発現し、平滑筋関連遺伝子の発現を制御する<ref name=ref26><pubmed>12756293</pubmed></ref>が、MKL1/MRTF-Aは、精巣と脳、MKL/MRTF-Bは脳に高い発現が認められる<ref name=ref20><pubmed>20709749</pubmed></ref>。MKL/MRTFによる転写の正負制御もシグナル、遺伝子、細胞の種類によって異なっていると考えられる。  
28行目: 32行目:


== 構造 ==
== 構造 ==
 
 
 SRFは、N末端側に約56アミノ酸残基で構成されるMADSボックス(MADS-box)<ref name=ref1><pubmed>7744019</pubmed></ref>、それに続くSRFコファクターとの相互作用部位、C末端側に転写活性化ドメイン<ref name=ref28><pubmed>8417320</pubmed></ref><ref name=ref29><pubmed>8407951</pubmed></ref>を有する。MADSボックス内にDNA結合ドメイン、二量体形成ドメインが存在する<ref name=ref4><pubmed>7637780</pubmed></ref>。
 SRFは、N末端側に約56アミノ酸残基で構成されるMADSボックス(MADS-box)<ref name=ref1><pubmed>7744019</pubmed></ref>、それに続くSRFコファクターとの相互作用部位、C末端側に転写活性化ドメイン<ref name=ref28><pubmed>8417320</pubmed></ref><ref name=ref29><pubmed>8407951</pubmed></ref>を有する。MADSボックス内にDNA結合ドメイン、二量体形成ドメインが存在する<ref name=ref4><pubmed>7637780</pubmed></ref>。


34行目: 38行目:


== 脳内発現 ==
== 脳内発現 ==
 
 
 SRFは、あらゆる組織で発現が認められている。中枢神経系においては、梨状皮質、大脳皮質、線条体、海馬、扁桃体に比較的強い発現が認められており、特に梨状皮質、海馬歯状回、CA1で強く発現する<ref name=ref30><pubmed>12234660</pubmed></ref>。一方、淡蒼球でほとんど認められず<ref name=ref30><pubmed>12234660</pubmed></ref><ref name=ref31><pubmed>9300412</pubmed></ref> 、中脳、視床下部では、弱いかほとんど認められない<ref name=ref30><pubmed>12234660</pubmed></ref><ref name=ref31><pubmed>9300412</pubmed></ref>。小脳においても顆粒細胞やプルキンエ細胞にも発現している<ref name=ref30><pubmed>12234660</pubmed></ref><ref name=ref31><pubmed>9300412</pubmed></ref>。また、発達過程に伴って発現変化し、大脳皮質、海馬歯状回とCA1においては生後28日までに発現量が上昇し、大脳皮質では成体時まで発現が維持される<ref name=ref30><pubmed>12234660</pubmed></ref>。また、末梢神経系においては、後根神経節での発現が報告されている<ref name=ref14><pubmed>18498735</pubmed></ref>。  
 SRFは、あらゆる組織で発現が認められている。中枢神経系においては、梨状皮質、大脳皮質、線条体、海馬、扁桃体に比較的強い発現が認められており、特に梨状皮質、海馬歯状回、CA1で強く発現する<ref name=ref30><pubmed>12234660</pubmed></ref>。一方、淡蒼球でほとんど認められず<ref name=ref30><pubmed>12234660</pubmed></ref><ref name=ref31><pubmed>9300412</pubmed></ref> 、中脳、視床下部では、弱いかほとんど認められない<ref name=ref30><pubmed>12234660</pubmed></ref><ref name=ref31><pubmed>9300412</pubmed></ref>。小脳においても顆粒細胞やプルキンエ細胞にも発現している<ref name=ref30><pubmed>12234660</pubmed></ref><ref name=ref31><pubmed>9300412</pubmed></ref>。また、発達過程に伴って発現変化し、大脳皮質、海馬歯状回とCA1においては生後28日までに発現量が上昇し、大脳皮質では成体時まで発現が維持される<ref name=ref30><pubmed>12234660</pubmed></ref>。また、末梢神経系においては、後根神経節での発現が報告されている<ref name=ref14><pubmed>18498735</pubmed></ref>。  


53行目: 57行目:
== 参考文献 ==
== 参考文献 ==


br>1. Shore P, Sharrocks AD.<br>The MADS-box family of transcription factors.<br>Eur J Biochem. 1995 Apr 1;229(1):1-13. Review.<br>PMID: 7744019
<references />
 
2. Miwa T, Kedes L.<br>Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene.<br>Mol Cell Biol. 1987 Aug;7(8):2803-13.<br>PMID: 2823106
 
3. Norman C, Runswick M, Pollock R, Treisman R.<br>Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element.<br>Cell. 1988 Dec 23;55(6):989-1003.<br>PMID: 3203386
 
4. Pellegrini L, Tan S, Richmond TJ.<br>Structure of serum response factor core bound to DNA.<br>Nature. 1995 Aug 10;376(6540):490-8.<br>PMID: 7637780
 
5. Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schütz G, Linden DJ, Ginty DD.<br>SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability.<br>Nat Neurosci. 2005 Jun;8(6):759-67. Epub 2005 May 8.<br>PMID: 15880109
 
6. Arsenian S, Weinhold B, Oelgeschläger M, Rüther U, Nordheim A.<br>Serum response factor is essential for mesoderm formation during mouse embryogenesis.<br>EMBO J. 1998 Nov 2;17(21):6289-99.<br>PMID: 9799237
 
7. Miano JM.<br>Role of serum response factor in the pathogenesis of disease.<br>Lab Invest. 2010 Sep;90(9):1274-84. Epub 2010 May 24. Review.<br>PMID: 20498652
 
8. Knöll B, Nordheim A.<br>Functional versatility of transcription factors in the nervous system: the SRF paradigm.<br>Trends Neurosci. 2009 Aug;32(8):432-42. Epub 2009 Jul 28. Review.<br>PMID: 19643506
 
9. Knöll B, Kretz O, Fiedler C, Alberti S, Schütz G, Frotscher M, Nordheim A.<br>Serum response factor controls neuronal circuit assembly in the hippocampus.<br>Nat Neurosci. 2006 Feb;9(2):195-204. Epub 2006 Jan 15.<br>PMID: 16415869
 
10. Stritt C, Knöll B.<br>Serum response factor regulates hippocampal lamination and dendrite development and is connected with reelin signaling.<br>Mol Cell Biol. 2010 Apr;30(7):1828-37. Epub 2010 Feb 1.<br>PMID: 20123976
 
11. Lu PP, Ramanan N.<br>Serum response factor is required for cortical axon growth but is dispensable for neurogenesis and neocortical lamination.<br>J Neurosci. 2011 Nov 16;31(46):16651-64.<br>PMID: 22090492
 
12. Etkin A, Alarcón JM, Weisberg SP, Touzani K, Huang YY, Nordheim A, Kandel ER.<br>A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context.<br>Neuron. 2006 Apr 6;50(1):127-43.<br>PMID: 16600861
 
13. Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, Casanova E, Wiebel FF, Schwarz H, Frotscher M, Schütz G, Nordheim A.<br>Neuronal migration in the murine rostral migratory stream requires serum response factor.<br>Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6148-53. Epub 2005 Apr 18.<br>PMID: 15837932
 
14. Wickramasinghe SR, Alvania RS, Ramanan N, Wood JN, Mandai K, Ginty DD.<br>Serum response factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons.<br>Neuron. 2008 May 22;58(4):532-45.<br>PMID: 18498735
 
15. Treisman R.<br>Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors.<br>Cell. 1986 Aug 15;46(4):567-74.<br>PMID: 3524858
 
16. Minty A, Kedes L.<br>Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif.<br>Mol Cell Biol. 1986 Jun;6(6):2125-36.<br>PMID: 3785189
 
17. Miano JM.<br>Serum response factor: toggling between disparate programs of gene expression.<br>J Mol Cell Cardiol. 2003 Jun;35(6):577-93. Review.<br>PMID: 12788374
 
18. Olson EN, Nordheim A.<br>Linking actin dynamics and gene transcription to drive cellular motile functions.<br>Nat Rev Mol Cell Biol. 2010 May;11(5):353-65. Review.<br>PMID: 20414257
 
19. Kalita K, Kharebava G, Zheng JJ, Hetman M.<br>Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity.<br>J Neurosci. 2006 Sep 27;26(39):10020-32.<br>PMID: 17005865
 
20. Ishikawa M, Nishijima N, Shiota J, Sakagami H, Tsuchida K, Mizukoshi M, Fukuchi M, Tsuda M, Tabuchi A.<br>Involvement of the serum response factor coactivator megakaryoblastic leukemia (MKL) in the activin-regulated dendritic complexity of rat cortical neurons.<br>J Biol Chem. 2010 Oct 22;285(43):32734-43. Epub 2010 Aug 13.<br>PMID: 20709749
 
21. Posern G, Treisman R.<br>Actin' together: serum response factor, its cofactors and the link to signal transduction.<br>Trends Cell Biol. 2006 Nov;16(11):588-96. Epub 2006 Oct 10. Review.<br>PMID: 17035020
 
22. Buchwalter G, Gross C, Wasylyk B.<br>Ets ternary complex transcription factors.<br>Gene. 2004 Jan 7;324:1-14. Review.<br>PMID: 14693367
 
23. Shaw PE, Schröter H, Nordheim A.<br>The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter.<br>Cell. 1989 Feb 24;56(4):563-72.<br>PMID: 2492906
 
24. Guettler S, Vartiainen MK, Miralles F, Larijani B, Treisman R.<br>RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding.<br>Mol Cell Biol. 2008 Jan;28(2):732-42. Epub 2007 Nov 19.<br>PMID: 18025109
 
25. Miralles F, Posern G, Zaromytidou AI, Treisman R.<br>Actin dynamics control SRF activity by regulation of its coactivator MAL.<br>Cell. 2003 May 2;113(3):329-42.<br>PMID: 12732141
 
26. Wang Z, Wang DZ, Pipes GC, Olson EN.<br>Myocardin is a master regulator of smooth muscle gene expression.<br>Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7129-34. Epub 2003 May 19.<br>PMID: 12756293
 
27. Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF, Bito H.<br>Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons.<br>Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):316-21. Epub 2008 Dec 30.<br>PMID: 19116276
 
28. Sharrocks AD, Gille H, Shaw PE.<br>Identification of amino acids essential for DNA binding and dimerization in p67SRF: implications for a novel DNA-binding motif.<br>Mol Cell Biol. 1993 Jan;13(1):123-32.<br>PMID: 8417320
 
29. Liu SH, Ma JT, Yueh AY, Lees-Miller SP, Anderson CW, Ng SY.<br>The carboxyl-terminal transactivation domain of human serum response factor contains DNA-activated protein kinase phosphorylation sites.<br>J Biol Chem. 1993 Oct 5;268(28):21147-54.<br>PMID: 8407951
 
30. Stringer JL, Belaguli NS, Iyer D, Schwartz RJ, Balasubramanyam A.<br>Developmental expression of serum response factor in the rat central nervous system.<br>Brain Res Dev Brain Res. 2002 Sep 20;138(1):81-6.<br>PMID: 12234660
 
31. Herdegen T, Blume A, Buschmann T, Georgakopoulos E, Winter C, Schmid W, Hsieh TF, Zimmermann M, Gass P.<br>Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation.<br>Neuroscience. 1997 Nov;81(1):199-212.<br>PMID: 9300412
 
32. Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A.<br>Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells.<br>J Cell Biol. 2002 Feb 18;156(4):737-50. Epub 2002 Feb 11.<br>PMID: 11839767
 
33. Stritt C, Stern S, Harting K, Manke T, Sinske D, Schwarz H, Vingron M, Nordheim A, Knöll B.<br>Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression.<br>Nat Neurosci. 2009 Apr;12(4):418-27. Epub 2009 Mar 8.<br>PMID: 19270689
 
34. Johnson AW, Crombag HS, Smith DR, Ramanan N.<br>Effects of serum response factor (SRF) deletion on conditioned reinforcement.<br>Behav Brain Res. 2011 Jul 7;220(2):312-8. Epub 2011 Feb 15.<br>PMID: 21329726
 
35. Lu PP, Ramanan N.<br>Serum response factor is required for cortical axon growth but is dispensable for neurogenesis and neocortical lamination.<br>J Neurosci. 2011 Nov 16;31(46):16651-64.<br>PMID: 22090492




(執筆者:田渕明子 担当編集委員:柚崎通介)
(執筆者:田渕明子 担当編集委員:柚崎通介)

案内メニュー