44
回編集
Masanorimatsuzaki (トーク | 投稿記録) 細編集の要約なし |
Masanorimatsuzaki (トーク | 投稿記録) 細編集の要約なし |
||
9行目: | 9行目: | ||
<br> | <br> | ||
'''ケージド神経伝達物質<br>'''最初のケージド神経伝達物質アゴニストは、1986年に報告されたケージドカルバミルコリンで、UV照射によってアセチルコリン受容体を活性化することに成功した<ref><pubmed> 3707910 </pubmed></ref>。最も広く用いられているものは、興奮性シナプス後部の主たる神経伝達物質に保護基が結合したケージドグルタミン酸であるが、他の多くの神経伝達物質のアゴニスト・アンタゴニストでもケージド試薬が開発されている。受容体の反応性を調べるために用いるだけでなく、ケージドグルタミン酸のUV照射によって、神経細胞の細胞膜上の多数のグルタミン酸受容体を活性化することで、活動電位を誘発することが可能であり、脳スライス標本において光照射部位を走査することによって、シナプス結合マッピングを行なう方法が確立されている<ref><pubmed> 7689225 </pubmed></ref>。一方で、シナプスのような微細構造における受容体反応を単一シナプスレベルで光誘導するためには、励起領域を1fl (1 μm<sup>3</sup>)以下にする必要があり、このためには焦点領域でのみ励起することができる2光子顕微鏡が適用可能である。しかし一般に蛍光分子に比べケージド分子は2光子励起されにくく、細胞障害を起こさずに活性化するためには、試薬の吸収断面積と量子効率を掛け合わせた数値(2光子活性効率)が0.1 GM (1 GM = 10<sup>-50 </sup>cm<sup>4</sup> s | '''ケージド神経伝達物質<br>'''最初のケージド神経伝達物質アゴニストは、1986年に報告されたケージドカルバミルコリンで、UV照射によってアセチルコリン受容体を活性化することに成功した<ref><pubmed> 3707910 </pubmed></ref>。最も広く用いられているものは、興奮性シナプス後部の主たる神経伝達物質に保護基が結合したケージドグルタミン酸であるが、他の多くの神経伝達物質のアゴニスト・アンタゴニストでもケージド試薬が開発されている。受容体の反応性を調べるために用いるだけでなく、ケージドグルタミン酸のUV照射によって、神経細胞の細胞膜上の多数のグルタミン酸受容体を活性化することで、活動電位を誘発することが可能であり、脳スライス標本において光照射部位を走査することによって、シナプス結合マッピングを行なう方法が確立されている<ref><pubmed> 7689225 </pubmed></ref>。一方で、シナプスのような微細構造における受容体反応を単一シナプスレベルで光誘導するためには、励起領域を1fl (1 μm<sup>3</sup>)以下にする必要があり、このためには焦点領域でのみ励起することができる2光子顕微鏡が適用可能である。しかし一般に蛍光分子に比べケージド分子は2光子励起されにくく、細胞障害を起こさずに活性化するためには、試薬の吸収断面積と量子効率を掛け合わせた数値(2光子活性効率)が0.1 GM (1 GM = 10<sup>-50 </sup>cm<sup>4</sup> s )を超えることが目安となる。また実際のシナプス伝達を模倣しようとすると、数mMのケージドグルタミン酸を投与する必要があり、高い水溶性、pH7付近の溶液中での自発的加水分解の起こりにくさ、反応速度定数が数百マイクロ秒以下であることが要求される。生理的条件下で使用できるものとして現在、MNI-Glutamate、CDNI-Glutamate、RuBi-Glutamateなどが報告されている(表)<ref name="ref3"><pubmed> 11687814 </pubmed></ref><ref><pubmed> 17581946 </pubmed></ref><ref name="ref4"><pubmed> 19506708 </pubmed></ref>。MNI-Glutamateを用いてシナプス後部の樹状突起スパインでのグルタミン酸受容体の応答マッピングや機能・構造可塑性を誘発できることが報告されており、単一樹状突起スパインにおける可塑性の解明に大いに役立っている<ref name="ref3" /><ref><pubmed> 15190253 </pubmed></ref>。また2光子励起可能なケージドGABAも報告されている<ref><pubmed> 20173751 </pubmed></ref>。これらのいくつかについてはTOCRIS、INVITORGENから購入可能である。 | ||
[[Image:Cagedtable.jpg|thumb|right|400px|表 代表的なケージド試薬の特性]] | [[Image:Cagedtable.jpg|thumb|right|400px|表 代表的なケージド試薬の特性]] | ||
19行目: | 19行目: | ||
<br> | <br> | ||
'''ケージドカルシウム<br>'''カルシウムイオンは保護基と共有結合できないため、高親和性のカルシウムキレート剤(BAPTA、EDTA、EGTA)に保護基が結合したケージド試薬が合成されている。保護基が結合した状態はカルシウムイオンに高親和性を持つが、保護基の解離によってキレート剤内の共有結合がはずれ低親和性(Kd = 5-300 nM)となり、カルシウムイオンを放出する。しかし解離したキレーターは低親和性ながらも結合能(Kd = 0.006-3 mM)を有すること、光解離しなかったケージドカルシウムは放出されたカルシウムイオンと速やかに結合するため、カルシウムイオン濃度の時空間制御法には、注意を払う必要がある<ref name="ref1" />。一方で全視野照射によって細胞全体にステップ状の活性上昇を与えることも可能であるため、通常では計測困難な、例えばカルシウムチャネル直下で起こる一過的なカルシウム濃度上昇による細胞内現象を、細胞全体の均一な濃度上昇によって誘導することが可能であり、カルシウム蛍光指示薬と併用することでカルシウム濃度上昇の定量計測が可能である。この方法は特に分泌現象の解明に役立っており<ref><pubmed> 10092049 </pubmed></ref>、またプルキンエ細胞の樹状突起においては、長期抑圧の誘導に必要な細胞内カルシウム濃度上昇の時空間パターンが詳細に明らかにされている<ref><pubmed> 17553426 </pubmed></ref>。2光子励起可能なケージドカルシウム、NDBF- | '''ケージドカルシウム<br>'''カルシウムイオンは保護基と共有結合できないため、高親和性のカルシウムキレート剤(BAPTA、EDTA、EGTA)に保護基が結合したケージド試薬が合成されている。保護基が結合した状態はカルシウムイオンに高親和性を持つが、保護基の解離によってキレート剤内の共有結合がはずれ低親和性(Kd = 5-300 nM)となり、カルシウムイオンを放出する。しかし解離したキレーターは低親和性ながらも結合能(Kd = 0.006-3 mM)を有すること、光解離しなかったケージドカルシウムは放出されたカルシウムイオンと速やかに結合するため、カルシウムイオン濃度の時空間制御法には、注意を払う必要がある<ref name="ref1" />。一方で全視野照射によって細胞全体にステップ状の活性上昇を与えることも可能であるため、通常では計測困難な、例えばカルシウムチャネル直下で起こる一過的なカルシウム濃度上昇による細胞内現象を、細胞全体の均一な濃度上昇によって誘導することが可能であり、カルシウム蛍光指示薬と併用することでカルシウム濃度上昇の定量計測が可能である。この方法は特に分泌現象の解明に役立っており<ref><pubmed> 10092049 </pubmed></ref>、またプルキンエ細胞の樹状突起においては、長期抑圧の誘導に必要な細胞内カルシウム濃度上昇の時空間パターンが詳細に明らかにされている<ref><pubmed> 17553426 </pubmed></ref>。2光子励起可能なケージドカルシウム、NDBF-EGTAやazid-1も報告されている(表)<ref name="ref1" />。 | ||
'''ケージドペプチド・ケージドタンパク質<br>'''G-アクチンが最初にケージド化されたタンパク質であり<ref><pubmed> 8049211 </pubmed></ref>、コフィリンなどもケージド化されてそれを瞬時に光照射することでその機能が明らかにされている<ref><pubmed> 15118165 </pubmed></ref>。市販の試薬を使うことでケージド化することも可能である。 | '''ケージドペプチド・ケージドタンパク質<br>'''G-アクチンが最初にケージド化されたタンパク質であり<ref><pubmed> 8049211 </pubmed></ref>、コフィリンなどもケージド化されてそれを瞬時に光照射することでその機能が明らかにされている<ref><pubmed> 15118165 </pubmed></ref>。市販の試薬を使うことでケージド化することも可能である。 | ||
37行目: | 37行目: | ||
<br> | <br> | ||
最近ではUV波長領域よりも長波長側の400 | 最近ではUV波長領域よりも長波長側の400 nm付近でも分解できるケージド試薬(RuBi-Glutamateなど)が開発されており<ref name="ref4" />、可視光を用いても、より細胞障害が低く、より深部での光分解が可能になりつつある。また光可逆的に活性をオンオフできるケージド試薬の開発が期待されている。 | ||
<references /> | <references /> |
回編集