48
回編集
Takeshiinoue (トーク | 投稿記録) 細編集の要約なし |
Takeshiinoue (トーク | 投稿記録) 細編集の要約なし |
||
28行目: | 28行目: | ||
ドパミンの前駆物質であるチロシンは必須アミノ酸ではなく、食物からタンパク質として摂取される他、体内で必須アミノ酸であるフェニルアラニンから変換される。チロシン水酸化酵素がドパミン合成の律速段階である。ドパミン合成はドパミン作動性神経のインパルス量に依存し、さらにシナプス前ドパミン受容体(自己受容体、D2受容体)刺激によって抑制される。ドパミンはモノアミン酸化酵素(MAO)とcatecholamine-O-methyl transferase (COMT)により主たる代謝産物であるhomovanillic acid (HVA)まで代謝される。 | ドパミンの前駆物質であるチロシンは必須アミノ酸ではなく、食物からタンパク質として摂取される他、体内で必須アミノ酸であるフェニルアラニンから変換される。チロシン水酸化酵素がドパミン合成の律速段階である。ドパミン合成はドパミン作動性神経のインパルス量に依存し、さらにシナプス前ドパミン受容体(自己受容体、D2受容体)刺激によって抑制される。ドパミンはモノアミン酸化酵素(MAO)とcatecholamine-O-methyl transferase (COMT)により主たる代謝産物であるhomovanillic acid (HVA)まで代謝される。 | ||
''放出の制御''' | '''放出の制御''' | ||
ストレス、運動などのドパミン作動性神経のインパルス流量を増やす刺激により、シナプス小胞からシナプス間隙へのドパミン放出が促進され、細胞外ドパミン濃度は増加する。ストレスでは中脳皮質ドパミン系が特に活発化し、運動では黒質線条体ドパミン系が特に活発化する。いったん放出されたドパミンは側坐核や線条体では主としてドパミン作動性神経の神経終末にあるドパミン・トランスポーター(以前はドパミン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のドパミン濃度は調節されている。ドパミン再取り込み阻害薬(抗うつ薬のbupropion、ナルコレプシーの治療薬であるmethylphenidate、試薬のGBR12909、麻薬のcocaine、methamphetamineなどがドパミン再取り込み阻害作用を有する)やドパミン放出促進薬(methamphetamine、methylphenidate)は前述した3つのドパミン投射系(黒質線条体、中脳皮質、中脳辺縁系)で細胞外ドパミン濃度を増加させる。特にmethamphetamineによるドパミン増加作用はbupropionに比べると顕著であり、bupropionによる増加が2〜3倍程度なのに対して、methamphetamineによる増加は10〜20倍までになる。また、SSRIであるsertralineも弱いながらドパミン再取り込み阻害作用を有する。 | ストレス、運動などのドパミン作動性神経のインパルス流量を増やす刺激により、シナプス小胞からシナプス間隙へのドパミン放出が促進され、細胞外ドパミン濃度は増加する。ストレスでは中脳皮質ドパミン系が特に活発化し、運動では黒質線条体ドパミン系が特に活発化する。いったん放出されたドパミンは側坐核や線条体では主としてドパミン作動性神経の神経終末にあるドパミン・トランスポーター(以前はドパミン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のドパミン濃度は調節されている。ドパミン再取り込み阻害薬(抗うつ薬のbupropion、ナルコレプシーの治療薬であるmethylphenidate、試薬のGBR12909、麻薬のcocaine、methamphetamineなどがドパミン再取り込み阻害作用を有する)やドパミン放出促進薬(methamphetamine、methylphenidate)は前述した3つのドパミン投射系(黒質線条体、中脳皮質、中脳辺縁系)で細胞外ドパミン濃度を増加させる。特にmethamphetamineによるドパミン増加作用はbupropionに比べると顕著であり、bupropionによる増加が2〜3倍程度なのに対して、methamphetamineによる増加は10〜20倍までになる。また、SSRIであるsertralineも弱いながらドパミン再取り込み阻害作用を有する。 | ||
47行目: | 47行目: | ||
セロトニンは必須アミノ酸であるトリプトファンから合成される。セロトニン合成の律速段階であるトリプトファン水酸化酵素は基質によって飽和されていないため、トリプトファンの取り込み、血中の遊離トリプトファン濃度がセロトニン合成に影響を与える。トリプトファンの脳内への取り込みは能動的取り込み機構を介しているが、芳香族アミノ酸や分枝鎖アミノ酸によって阻害される。トリプトファンの過剰摂取はセロトニン合成を増加させる。また、トリプトファンは血中では蛋白に結合しており、トリプトファンの蛋白結合を阻害する薬物(例えばバルプロ酸)の投与により血中の遊離トリプトファン濃度は上昇するため、脳内セロトニン濃度は上昇する。セロトニンはMAO-Aによって5-HIAAに代謝されるが、MAO-Bによる代謝はうけない。興味深いことに、セロトニン作動性神経内に、MAO-Bは存在するが、MAO-Aは存在しない。したがって、セロトニンの代謝はセロトニン作動性神経内ではなく、それ以外の細胞で行われると考えられる。 | セロトニンは必須アミノ酸であるトリプトファンから合成される。セロトニン合成の律速段階であるトリプトファン水酸化酵素は基質によって飽和されていないため、トリプトファンの取り込み、血中の遊離トリプトファン濃度がセロトニン合成に影響を与える。トリプトファンの脳内への取り込みは能動的取り込み機構を介しているが、芳香族アミノ酸や分枝鎖アミノ酸によって阻害される。トリプトファンの過剰摂取はセロトニン合成を増加させる。また、トリプトファンは血中では蛋白に結合しており、トリプトファンの蛋白結合を阻害する薬物(例えばバルプロ酸)の投与により血中の遊離トリプトファン濃度は上昇するため、脳内セロトニン濃度は上昇する。セロトニンはMAO-Aによって5-HIAAに代謝されるが、MAO-Bによる代謝はうけない。興味深いことに、セロトニン作動性神経内に、MAO-Bは存在するが、MAO-Aは存在しない。したがって、セロトニンの代謝はセロトニン作動性神経内ではなく、それ以外の細胞で行われると考えられる。 | ||
''放出の制御''' | '''放出の制御''' | ||
ドパミンやノルアドレナリンと同様に、ストレスによりセロトニン作動性神経のインパルス流量は増え、シナプス間隙へのセロトニン放出が促進され、細胞外セロトニン濃度は増加する。放出されたセロトニンはセロトニン作動性神経の神経終末にあるセロトニン・トランスポーター(以前はセロトニン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のセロトニン濃度は調節されている。セロトニン再取り込み阻害薬(3級アミンの三環系抗うつ薬とSSRI)投与はほぼ全脳で細胞外セロトニン濃度を増加させる。 | ドパミンやノルアドレナリンと同様に、ストレスによりセロトニン作動性神経のインパルス流量は増え、シナプス間隙へのセロトニン放出が促進され、細胞外セロトニン濃度は増加する。放出されたセロトニンはセロトニン作動性神経の神経終末にあるセロトニン・トランスポーター(以前はセロトニン取り込み部位と呼ばれていた)というタンパク質により神経終末に再取り込みされ、シナプス間隙のセロトニン濃度は調節されている。セロトニン再取り込み阻害薬(3級アミンの三環系抗うつ薬とSSRI)投与はほぼ全脳で細胞外セロトニン濃度を増加させる。 | ||
回編集