79
回編集
Soheisakata (トーク | 投稿記録) 細編集の要約なし |
Soheisakata (トーク | 投稿記録) 細編集の要約なし |
||
1行目: | 1行目: | ||
英語名:sodium channel | 英語名:sodium channel | ||
ナトリウムチャネルは高い選択性を持ってナトリウムイオンを透過させるイオンチャネルである。ナトリウムチャネルとしては、電位依存性ナトリウムチャネル(Navチャネル)、および上皮性ナトリウムチャネル(ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルは[[wikipedia:ja:アラン・ロイド・ホジキン|ホジキン(Alan Lloyd Hodgkin)]]と[[wikipedia:ja:アンドリュー・フィールディング・ハクスりー|ハクスレー(Andrew Fielding Huxley)]] | ナトリウムチャネルは高い選択性を持ってナトリウムイオンを透過させるイオンチャネルである。ナトリウムチャネルとしては、電位依存性ナトリウムチャネル(Navチャネル)、および上皮性ナトリウムチャネル(ENaC)が知られているが、これらは分子構造が全く異なっているため、本項目では電位依存性ナトリウムチャネルについてのみ記述する。電位依存性ナトリウムチャネルは[[wikipedia:ja:アラン・ロイド・ホジキン|ホジキン(Alan Lloyd Hodgkin)]]と[[wikipedia:ja:アンドリュー・フィールディング・ハクスりー|ハクスレー(Andrew Fielding Huxley)]]によるイカの[[wikipedia:|Squid giant axon|巨大軸索]]を用いた研究によりその存在が予測され、1984年に沼博士らによって遺伝子が同定された。[[wikipedia:ja:中枢神経系|中枢神経]]や[[wikipedia:ja:末梢神経|末梢神経]]、[[wikipedia:ja:骨格筋|骨格筋]]、[[wikipedia:ja:心筋|心筋]]に存在し、[[カリウムチャネル]]とともに[[wikipedia:ja:膜電位|膜電位]]を介して機能的に共役し、[[活動電位]]の開始および伝搬に本質的な役割を担っている。 | ||
== 神経細胞における分布 == | == 神経細胞における分布 == | ||
Navチャネルは広く[[神経細胞]]において発現し、[[樹状突起]] | Navチャネルは広く[[神経細胞]]において発現し、[[樹状突起]]、[[細胞体]]、[[軸索]]に存在しているが、一様に発現しているのではなく、[[有髄神経]]の軸索に存在する[[ランビエ紋輪]](nodes of Ranvier)、および軸索起始部(axon initial segment)に強く局在する。ランビエ紋輪とaxon initial segmentでのNavチャネルは、アダプタータンパク質であるアンキリンを介して細胞の裏打ち構造に繋ぎとめられることで局在が可能になっている。 | ||
== 構造 == | == 構造 == | ||
21行目: | 21行目: | ||
イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた2。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。 [[Image:Nachannel-TopView.png|thumb|right|229x254px|図2. 電位依存性ナトリウムチャネルの立体構造。この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al.2011より転載)]] | イオン選択性は孔が一番狭くなっているselective filterと呼ばれる部分で行われている。Navチャネルはグアニジウムなどの[[wikipedia:ja:イオン半径|イオン半径]]の大きいイオンに対してもある程度の透過性を持つことから、Navチャネルのselective filterの幅はナトリウムイオンよりも大きく、ナトリウムイオン1分子に対し、1分子の水を配位した状態で、孔を選択的に透過するという考えが提唱されてきた2。実際、NachBacの立体構造を見てみると、selective filterの一番狭くなっている部分の幅は、ちょうどナトリウムイオンに水分子が1つ配位したときのサイズに近いことが明らかになった。 [[Image:Nachannel-TopView.png|thumb|right|229x254px|図2. 電位依存性ナトリウムチャネルの立体構造。この図ではポアドメインの中央部に、構造を決定する際に使用した水銀原子が見える。(Payandeh et al.2011より転載)]] | ||
== イオン選択性 == | == イオン選択性 == | ||
イオン選択性に関わるselective filterは5番目のヘリックス(S5)と6番目のヘリックス(S6)の間に存在する。1価の正電荷を持つイオンの透過性はイオン半径に比例している。イオン半径の小さいプロトンに対して、非常に強い透過性を持ち、Li+≈Na+>K+>Rb+>Cs+の順に透過性が高い。またグアニジウムはK+より透過しやすい。図3に真核生物のNavチャネルのselective filterのアミノ酸配列を示した。電位依存性カルシウムチャネルでは4つのリピート、すべてがマイナス電荷を持ったグルタミン酸になっている部分が、Navチャネルでは各リピートで異なり、中には電荷を持たないアミノ酸も含まれている。ナトリウムチャネルのリピートIII, IVのリジン、アラニンのいずれかをグルタミン酸に変異させると、ナトリウムイオンだけでなく、カリウムイオン、アンモニウムイオン、さらにカルシウムイオンに対しても透過性が現れる。特に、両方ともグルタミン酸に置き換えると、ナトリウムイオンよりカルシウムイオンに対して選択的になってしまう3。そのためアスパラギン酸、グルタミン酸、リジン、アラニンが形成する環状の配置が、ナトリウムイオンの選択性に重要であると考えられている。 [[Image:SelectiveFilter alignments.png|thumb|right|228x114px|図3. 電位依存性ナトリウムチャネル、およびカルシウムチャネルのselective filter 付近のアミノ酸配列の比較。イオン選択性に最も重要であると考えられる部分をboxで囲んだ。]] | イオン選択性に関わるselective filterは5番目のヘリックス(S5)と6番目のヘリックス(S6)の間に存在する。1価の正電荷を持つイオンの透過性はイオン半径に比例している。イオン半径の小さいプロトンに対して、非常に強い透過性を持ち、Li+≈Na+>K+>Rb+>Cs+の順に透過性が高い。またグアニジウムはK+より透過しやすい。図3に真核生物のNavチャネルのselective filterのアミノ酸配列を示した。電位依存性カルシウムチャネルでは4つのリピート、すべてがマイナス電荷を持ったグルタミン酸になっている部分が、Navチャネルでは各リピートで異なり、中には電荷を持たないアミノ酸も含まれている。ナトリウムチャネルのリピートIII, IVのリジン、アラニンのいずれかをグルタミン酸に変異させると、ナトリウムイオンだけでなく、カリウムイオン、アンモニウムイオン、さらにカルシウムイオンに対しても透過性が現れる。特に、両方ともグルタミン酸に置き換えると、ナトリウムイオンよりカルシウムイオンに対して選択的になってしまう3。そのためアスパラギン酸、グルタミン酸、リジン、アラニンが形成する環状の配置が、ナトリウムイオンの選択性に重要であると考えられている。 [[Image:SelectiveFilter alignments.png|thumb|right|228x114px|図3. 電位依存性ナトリウムチャネル、およびカルシウムチャネルのselective filter 付近のアミノ酸配列の比較。イオン選択性に最も重要であると考えられる部分をboxで囲んだ。]] | ||
== 膜電位依存的な活性化および不活性化 == | == 膜電位依存的な活性化および不活性化 == | ||
33行目: | 35行目: | ||
通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの神経細胞では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する(持続性ナトリウム電流)。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく(resurgent電流)、これによりスパイクの後に脱分極が引き起こされることが知られている。 | 通常、Navチャネルは不活性化が速いため、一過的にしか内向き電流は流れないが、[[小脳]]の[[プルキンエ細胞]]をはじめ多くの神経細胞では、長時間にわたり不活性化せずに開き続ける持続的な内向き電流が存在する(持続性ナトリウム電流)。また、これに加えて小脳のプルキンエ細胞などでは、不活性化状態ののち再開口が起こりやすく(resurgent電流)、これによりスパイクの後に脱分極が引き起こされることが知られている。 | ||
== αサブユニットの多様性 == | == αサブユニットの多様性 == | ||
81行目: | 84行目: | ||
| テトロドトキシン抵抗性、サキシトキシン抵抗性<br><br> | | テトロドトキシン抵抗性、サキシトキシン抵抗性<br><br> | ||
| 3番染色体<br> | | 3番染色体<br> | ||
| | | 先天性QT延長症候群、[[wikipedia:ja:ブルガダ症候群|ブルガダ症候群]]<br> | ||
|- | |- | ||
| Nav1.6<br>(SCN8a<br> | | Nav1.6<br>(SCN8a<br> | ||
112行目: | 115行目: | ||
== βサブユニット == | == βサブユニット == | ||
βサブユニットは1回膜貫通型のサブユニットで、β1からβ4まで4種類存在する。これまでの研究によりαサブユニットだけでも、電位依存的にナトリウムチャネルを透過させる機能を保持していることが分かっているが、βサブユニットはαサブユニットと共に存在することで、ナトリウムチャネルの機能を変える。またすべてのβサブユニットは細胞外側に細胞接着に関わる分子に見られるイムノグロブリンドメインを持っている。そのため一部のβサブユニットは、チャネルの機能を補完するだけでなく、種々の細胞接着因子と結合し、細胞運動や[[wikipedia:ja:細胞接着|細胞接着]] | βサブユニットは1回膜貫通型のサブユニットで、β1からβ4まで4種類存在する。これまでの研究によりαサブユニットだけでも、電位依存的にナトリウムチャネルを透過させる機能を保持していることが分かっているが、βサブユニットはαサブユニットと共に存在することで、ナトリウムチャネルの機能を変える。またすべてのβサブユニットは細胞外側に細胞接着に関わる分子に見られるイムノグロブリンドメインを持っている。そのため一部のβサブユニットは、チャネルの機能を補完するだけでなく、種々の細胞接着因子と結合し、細胞運動や[[wikipedia:ja:細胞接着|細胞接着]]、[[wikipedia:neurite|神経突起]]の伸長に重要な役割を担っていることが知られている。またβ4は細胞内側からのblocking particleとして作用し、resurgent電流の形成に関わることが示唆されている。 | ||
== 薬剤による機能の修飾 == | == 薬剤による機能の修飾 == |
回編集