「血清応答因子」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
英語名:serum response factor 英略称:SRF 独:Serum-Response-Faktor
英語名:serum response factor 英略称:SRF 独:Serum-Response-Faktor


 SRFは、MADSボックス(MADS-box)ファミリーに属する転写因子である<ref name=ref1><pubmed>7744019</pubmed></ref>。遺伝子のCC(A/T)<sub>6</sub>GG (CArG) ボックス<ref name=ref2><pubmed>2823106</pubmed></ref>に二量体で結合し<ref name=ref3><pubmed>3203386</pubmed></ref> <ref name=ref4><pubmed>7637780</pubmed></ref>、c-''fos''などの転写因子をコードするある種の最初期遺伝子やβ-アクチンなど細胞骨格系遺伝子の発現を制御することが知られている<ref name=ref5><pubmed>15880109</pubmed></ref>。SRFは、中胚葉形成などの胚発生<ref name=ref6><pubmed>9799237</pubmed></ref>、筋分化<ref name=ref7><pubmed>20498652</pubmed></ref>、心機能<ref name=ref7><pubmed>20498652</pubmed></ref>、免疫系細胞の成熟<ref name=ref7><pubmed>20498652</pubmed></ref>など多彩な生命現象に関与するとの指摘がある。中枢神経系においては、海馬の神経回路形成<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref>、樹状突起や軸索形態<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref><ref name=ref10><pubmed>20123976</pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、シナプス機能<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref12><pubmed>16600861</pubmed></ref>への関与、海馬や大脳皮質の層構造形成<ref name=ref10>20123976<pubmed></pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、神経細胞移動<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref13><pubmed>15837932</pubmed></ref>、末梢神経系においては後根神経節の軸索分岐形成や伸長への関与<ref name=ref14><pubmed>18498735</pubmed></ref>が指摘されている。  
 SRFは、[[wikidepia:JA:MADSボックス|MADSボックス]](MADS-box)ファミリーに属する[[転写因子]]である<ref name=ref1><pubmed>7744019</pubmed></ref>。遺伝子のCC(A/T)<sub>6</sub>GG (CArG) ボックス<ref name=ref2><pubmed>2823106</pubmed></ref>に二量体で結合し<ref name=ref3><pubmed>3203386</pubmed></ref> <ref name=ref4><pubmed>7637780</pubmed></ref>、[[c-''fos'']]などの転写因子をコードするある種の[[最初期遺伝子]]や[[β-アクチン]]など[[細胞骨格]]系遺伝子の発現を制御することが知られている<ref name=ref5><pubmed>15880109</pubmed></ref>。SRFは、[[wikidepia:JA:中胚葉|中胚葉]]形成などの[[wikidepia:JA:胚発生|胚発生]]<ref name=ref6><pubmed>9799237</pubmed></ref>、[[wikidepia:JA:筋|筋]]分化<ref name=ref7><pubmed>20498652</pubmed></ref>、[[wikidepia:JA:心|心]]機能<ref name=ref7><pubmed>20498652</pubmed></ref>、[[wikidepia:JA:免疫|免疫]]系細胞の成熟<ref name=ref7><pubmed>20498652</pubmed></ref>など多彩な生命現象に関与するとの指摘がある。[[中枢神経]]系においては、[[海馬]]の神経回路形成<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref>、[[樹状突起]]や[[軸索]]形態<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref9><pubmed>16415869</pubmed></ref><ref name=ref10><pubmed>20123976</pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、[[シナプス]]機能<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref12><pubmed>16600861</pubmed></ref>への関与、海馬や[[大脳皮質]]の[[層構造]]形成<ref name=ref10>20123976<pubmed></pubmed></ref><ref name=ref11><pubmed>22090492</pubmed></ref>、[[神経細胞移動]]<ref name=ref8><pubmed>19643506</pubmed></ref><ref name=ref13><pubmed>15837932</pubmed></ref>、[[末梢神経系]]においては[[後根神経節]]の軸索分岐形成や伸長への関与<ref name=ref14><pubmed>18498735</pubmed></ref>が指摘されている。  


== 歴史 ==
== 歴史 ==


 血清刺激によって最初期遺伝子c''-fos''の発現誘導が起こるが、c-''fos''遺伝子の転写開始点より上流に存在し、血清に応答して転写を制御する働きをもつ塩基配列を血清応答要素(serum response element, SRE)、SREに結合する分子を血清応答因子(serum response factor, SRF)と名付けた<ref name=ref15><pubmed>3524858</pubmed></ref>。1988年にはSRF cDNAが単離され、ホモ二量体を形成してDNAに結合することが指摘された<ref name=ref3><pubmed>3203386</pubmed></ref>。SRE配列には、CC(A/T)<sub>6</sub>GG、いわゆるCArGボックス<ref name=ref2><pubmed>2823106</pubmed></ref>が含まれており、SRFが結合する配列はこのCArGボックスである。CArGボックスは、c-''fos''や''egr''-1などの最初期遺伝子だけではなく、アクチンなどの細胞骨格系遺伝子にも存在していることが判明し、実際のSRFの標的遺伝子もしくは標的遺伝子候補となっている<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref16><pubmed>3785189</pubmed></ref><ref name=ref17><pubmed>12788374</pubmed></ref><ref name=ref18><pubmed>20414257</pubmed></ref>。また、SRFを含む多くの転写因子に相同性の高い領域があることが判明し、その領域を4つの転写因子(Minichromosome maintenance 1 protein, Agamous, Deficiens, SRF)の頭文字をとってMADSボックス(MADS-box)と名付けた<ref name=ref1><pubmed>7744019</pubmed></ref>。したがって、MADSボックス(MADS-box)を持つ分子はMADSボックス(MADS-box)ファミリーに属し、SRFもその一つである<ref name=ref1><pubmed>7744019</pubmed></ref>。  
 血清刺激によって最初期遺伝子c''-fos''の発現誘導が起こるが、c-''fos''遺伝子の[[wikidepia:JA:転写開始点|転写開始点]]より上流に存在し、[[wikidepia:JA:血清|血清]]に応答して転写を制御する働きをもつ塩基配列を血清応答要素(serum response element, SRE)、SREに結合する分子を血清応答因子(serum response factor, SRF)と名付けた<ref name=ref15><pubmed>3524858</pubmed></ref>。1988年にはSRF cDNAが単離され、ホモ二量体を形成してDNAに結合することが指摘された<ref name=ref3><pubmed>3203386</pubmed></ref>。SRE配列には、CC(A/T)<sub>6</sub>GG、いわゆる[[wikidepia:JA:CArGボックス|CArGボックス]]<ref name=ref2><pubmed>2823106</pubmed></ref>が含まれており、SRFが結合する配列はこのCArGボックスである。CArGボックスは、c-''fos''や[[''egr''-1]]などの最初期遺伝子だけではなく、アクチンなどの細胞骨格系遺伝子にも存在していることが判明し、実際のSRFの標的遺伝子もしくは標的遺伝子候補となっている<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref16><pubmed>3785189</pubmed></ref><ref name=ref17><pubmed>12788374</pubmed></ref><ref name=ref18><pubmed>20414257</pubmed></ref>。また、SRFを含む多くの転写因子に相同性の高い領域があることが判明し、その領域を4つの転写因子(Minichromosome maintenance 1 protein, Agamous, Deficiens, SRF)の頭文字をとってMADSボックス(MADS-box)と名付けた<ref name=ref1><pubmed>7744019</pubmed></ref>。したがって、MADSボックス(MADS-box)を持つ分子はMADSボックス(MADS-box)ファミリーに属し、SRFもその一つである<ref name=ref1><pubmed>7744019</pubmed></ref>。  


== 細胞内制御機構 ==
== 細胞内制御機構 ==
13行目: 13行目:
[[image:SRF2.jpg|thumb|350px|'''図. SRF細胞内制御機構のモデル(主に細胞株中心の解析結果)''']]
[[image:SRF2.jpg|thumb|350px|'''図. SRF細胞内制御機構のモデル(主に細胞株中心の解析結果)''']]


 SRFは、血清<ref name=ref15><pubmed>3524858</pubmed></ref>、神経成長因子(nerve growth factor, NGF)<ref name=ref14><pubmed>18498735</pubmed></ref>, 脳由来神経栄養因子(brain-derived neurotrophic factor, BDNF)<ref name=ref19><pubmed>17005865</pubmed></ref>などの神経栄養因子、 (transforming growth factor- β, TGF-β)スーパーファミリー<ref name=ref20><pubmed>20709749</pubmed></ref>、リゾホスファチジン酸(lysophosphatidic acid, LPA)<ref name=ref21><pubmed>17035020</pubmed></ref>などの細胞外リガンドによって制御される。SRF制御のための細胞内情報伝達は、MAPキナーゼ伝達経路<ref name=ref21><pubmed></pubmed></ref>と低分子量Gタンパク質Rho伝達経路の大きく2つがよく知られている(図)<ref name=ref21><pubmed>17035020</pubmed></ref>。情報の最終到達点は、SRFによる標的遺伝子の制御であるが、SRFに結合して転写を制御するSRFコファクター(後述)が細胞内情報の統合や標的遺伝子の決定を行う可能性が指摘されている<ref name=ref21><pubmed>17035020</pubmed></ref>。  
 SRFは、血清<ref name=ref15><pubmed>3524858</pubmed></ref>、[[神経成長因子]](nerve growth factor, NGF)<ref name=ref14><pubmed>18498735</pubmed></ref>, [[脳由来神経栄養因子]](brain-derived neurotrophic factor, BDNF)<ref name=ref19><pubmed>17005865</pubmed></ref>などの神経栄養因子、 ([[transforming growth factor- β]], TGF-β)スーパーファミリー<ref name=ref20><pubmed>20709749</pubmed></ref>、[[リゾホスファチジン酸]](lysophosphatidic acid, LPA)<ref name=ref21><pubmed>17035020</pubmed></ref>などの細胞外リガンドによって制御される。SRF制御のための細胞内情報伝達は、[[MAPキナーゼ伝達経路]]<ref name=ref21><pubmed></pubmed></ref>と[[低分子量Gタンパク質]][[Rho]]伝達経路の大きく2つがよく知られている(図)<ref name=ref21><pubmed>17035020</pubmed></ref>。情報の最終到達点は、SRFによる標的遺伝子の制御であるが、SRFに結合して転写を制御するSRFコファクター(後述)が細胞内情報の統合や標的遺伝子の決定を行う可能性が指摘されている<ref name=ref21><pubmed>17035020</pubmed></ref>。  


== SRFコファクター ==
== SRFコファクター ==


=== Ternary complex factor (TCF) ===  
=== Ternary complex factor ===  


 TCFは、Ets-like transcription factor (Elk-1)、SRF accessory protein 1 (SAP-1)/Elk-4、New ets transcription factor (Net)/Ets-related protein(ERP)/SAP-2/Elk-3の3つが知られている<ref name=ref22><pubmed>14693367</pubmed></ref>。TCFはE-twenty six (ETS)転写ファミリー(ETS transcription factor family)に属し、DNA結合ドメインであるETSドメインを持つ<ref name=ref22><pubmed>14693367</pubmed></ref>。
 Ternary complex factor(TCF)は、[[wikidepia:Ets-like transcription factor|Ets-like transcription factor]] (Elk-1)、[[wikidepia:SRF accessory protein 1|SRF accessory protein 1]] (SAP-1)/Elk-4、[[wikidepia:New ets transcription factor|New ets transcription factor]] (Net)/Ets-related protein(ERP)/SAP-2/Elk-3の3つが知られている<ref name=ref22><pubmed>14693367</pubmed></ref>。TCFは[[wikidepia:E-twenty six|E-twenty six]] (ETS)転写ファミリー(ETS transcription factor family)に属し、DNA結合ドメインであるETSドメインを持つ<ref name=ref22><pubmed>14693367</pubmed></ref>。


 TCFは、CArGボックス近傍のDNA配列(GGAA/T)とSRFに結合して三量体を形成し、下流遺伝子の発現を制御する<ref name=ref22><pubmed>14693367</pubmed></ref>。またMAPキナーゼによりリン酸化されて活性調節される<ref name=ref22><pubmed>14693367</pubmed></ref>。c-fos遺伝子の転写調節に重要な因子として同定され、解析が進んだ<ref name=ref23><pubmed>2492906</pubmed></ref>。しかし、TCFによる転写の正負制御はシグナル、遺伝子、細胞の種類によって異なると考えられる。  
 TCFは、CArGボックス近傍のDNA配列(GGAA/T)とSRFに結合して三量体を形成し、下流遺伝子の発現を制御する<ref name=ref22><pubmed>14693367</pubmed></ref>。またMAPキナーゼによりリン酸化されて活性調節される<ref name=ref22><pubmed>14693367</pubmed></ref>。c-fos遺伝子の転写調節に重要な因子として同定され、解析が進んだ<ref name=ref23><pubmed>2492906</pubmed></ref>。しかし、TCFによる転写の正負制御はシグナル、遺伝子、細胞の種類によって異なると考えられる。  
25行目: 25行目:
=== MyocardinとMKL/MRTF ===  
=== MyocardinとMKL/MRTF ===  


 Myocardinとmegakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF)もSRFに結合するコファクターである<ref name=ref18><pubmed>20414257</pubmed></ref>。MyocardinとMKL/MRTFは、ドメイン構造が類似しているが、アクチン動態のシグナルに対しては応答性が異なる<ref name=ref24><pubmed>18025109</pubmed></ref>。主にNIH3T3細胞等の非神経細胞において、MKL/MRTFはRhoシグナル活性化によるアクチン細胞骨格の再編成によってG-アクチンから解離し、核移行して下流遺伝子の発現を制御するモデルが提唱されている(図)<ref name=ref25><pubmed>12732141</pubmed></ref>。一方、myocardinはRhoシグナルに対する応答性は低いとされている<ref name=ref24><pubmed>18025109</pubmed></ref>。MKL/MRTFは、異なる遺伝子にコードされるMKL1/MRTF-A (別名megakaryocytic acute leukemia (MAL), basic, SAP, and coiled-coil domain (BSAC))とMKL2/MRTF-B (別名MAL16)の2種類が知られている<ref name=ref21><pubmed>17035020</pubmed></ref>。Myocardinは、心臓、骨格筋に高発現し、平滑筋関連遺伝子の発現を制御する<ref name=ref26><pubmed>12756293</pubmed></ref>が、MKL1/MRTF-Aは、精巣と脳、MKL/MRTF-Bは脳に高い発現が認められる<ref name=ref20><pubmed>20709749</pubmed></ref>。MKL/MRTFによる転写の正負制御もシグナル、遺伝子、細胞の種類によって異なっていると考えられる。  
 [[wikidepia:Myocardin|Myocardin]]と[[wikidepia:megakaryoblastic leukemia|megakaryoblastic leukemia]] (MKL)/myocardin-related transcription factor (MRTF)もSRFに結合するコファクターである<ref name=ref18><pubmed>20414257</pubmed></ref>。MyocardinとMKL/MRTFは、ドメイン構造が類似しているが、アクチン動態のシグナルに対しては応答性が異なる<ref name=ref24><pubmed>18025109</pubmed></ref>。主にNIH3T3細胞等の非神経細胞において、MKL/MRTFはRhoシグナル活性化によるアクチン細胞骨格の再編成によってG-アクチンから解離し、核移行して下流遺伝子の発現を制御するモデルが提唱されている(図)<ref name=ref25><pubmed>12732141</pubmed></ref>。一方、myocardinはRhoシグナルに対する応答性は低いとされている<ref name=ref24><pubmed>18025109</pubmed></ref>。MKL/MRTFは、異なる遺伝子にコードされる[[wikidepia:MKL1|MKL1]]/MRTF-A (別名megakaryocytic acute leukemia (MAL), basic, SAP, and coiled-coil domain (BSAC))と[[wikidepia:MKL2|MKL2]]/MRTF-B (別名MAL16)の2種類が知られている<ref name=ref21><pubmed>17035020</pubmed></ref>。Myocardinは、心臓、骨格筋に高発現し、平滑筋関連遺伝子の発現を制御する<ref name=ref26><pubmed>12756293</pubmed></ref>が、MKL1/MRTF-Aは、[[wikidepia:JA:精巣|精巣]]と脳、MKL/MRTF-Bは脳に高い発現が認められる<ref name=ref20><pubmed>20709749</pubmed></ref>。MKL/MRTFによる転写の正負制御もシグナル、遺伝子、細胞の種類によって異なっていると考えられる。  


== SRF標的遺伝子 ==
== SRF標的遺伝子 ==


 CArGボックスを有する遺伝子がSRFの標的となりうる。しかし、SRFが結合して転写を制御しているかどうかの判断をCArGボックスというDNA配列の有無だけで行うのは困難である。現在、代表的なSRF標的遺伝子としてc-fos、egr-1などの最初期遺伝子が知られている<ref name=ref5><pubmed>15880109</pubmed></ref>。β-アクチン遺伝子も代表的な標的遺伝子である<ref name=ref5><pubmed>15880109</pubmed></ref>。近年、神経系SRF標的遺伝子としてactivity-regulated cytoskeleton-associated protein (Arc)遺伝子が報告されている<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref27><pubmed>19116276</pubmed></ref>。また、最初期遺伝子に加え、多くの細胞骨格関連遺伝子にCArGボックスが存在している<ref name=ref16><pubmed>3785189</pubmed></ref><ref name=ref17><pubmed>12788374</pubmed></ref><ref name=ref18><pubmed>20414257</pubmed></ref>。  
 CArGボックスを有する遺伝子がSRFの標的となりうる。しかし、SRFが結合して転写を制御しているかどうかの判断をCArGボックスというDNA配列の有無だけで行うのは困難である。現在、代表的なSRF標的遺伝子としてc-fos、egr-1などの最初期遺伝子が知られている<ref name=ref5><pubmed>15880109</pubmed></ref>。β-アクチン遺伝子も代表的な標的遺伝子である<ref name=ref5><pubmed>15880109</pubmed></ref>。近年、神経系SRF標的遺伝子として[[activity-regulated cytoskeleton-associated protein]] (Arc)遺伝子が報告されている<ref name=ref5><pubmed>15880109</pubmed></ref><ref name=ref27><pubmed>19116276</pubmed></ref>。また、最初期遺伝子に加え、多くの細胞骨格関連遺伝子にCArGボックスが存在している<ref name=ref16><pubmed>3785189</pubmed></ref><ref name=ref17><pubmed>12788374</pubmed></ref><ref name=ref18><pubmed>20414257</pubmed></ref>。  


== 構造 ==
== 構造 ==
35行目: 35行目:
 SRFは、N末端側に約56アミノ酸残基で構成されるMADSボックス(MADS-box)<ref name=ref1><pubmed>7744019</pubmed></ref>、それに続くSRFコファクターとの相互作用部位、C末端側に転写活性化ドメイン<ref name=ref28><pubmed>8417320</pubmed></ref><ref name=ref29><pubmed>8407951</pubmed></ref>を有する。MADSボックス内にDNA結合ドメイン、二量体形成ドメインが存在する<ref name=ref4><pubmed>7637780</pubmed></ref>。
 SRFは、N末端側に約56アミノ酸残基で構成されるMADSボックス(MADS-box)<ref name=ref1><pubmed>7744019</pubmed></ref>、それに続くSRFコファクターとの相互作用部位、C末端側に転写活性化ドメイン<ref name=ref28><pubmed>8417320</pubmed></ref><ref name=ref29><pubmed>8407951</pubmed></ref>を有する。MADSボックス内にDNA結合ドメイン、二量体形成ドメインが存在する<ref name=ref4><pubmed>7637780</pubmed></ref>。


 SRFコアホモ二量体とDNAとの複合体の構造がX線構造解析により明らかにされた<ref name=ref4><pubmed>7637780</pubmed></ref>。SRFコアドメインは、約90アミノ酸残基から成り、DNA結合領域、二量体形成、SRFコファクターとの相互作用部位を持つ。SRFコアの各サブユニットから伸びる両親媒性α-ヘリックス(αI)が逆平行コイルドコイルを形成し、CArGボックスの小溝内に平行に配置している<ref name=ref4><pubmed></pubmed></ref>。αIから伸びる塩基性N末端はDNAの主溝にはまり込んでいる<ref name=ref4><pubmed>7637780</pubmed></ref>。また、βI、βIIから成る4本の逆並行βシートが二量体形成のための中心的要素となっている<ref name=ref4><pubmed>7637780</pubmed></ref>。C末端は変則的なコイル構造と短いα-へリックス(αII)をとっている<ref name=ref4><pubmed>7637780</pubmed></ref>。したがって、SRF コアドメインはDNA結合領域であるコイルドコイルの下層、βシートから成る中間層、C末端領域からなる上層という3層から成る。SRFコアホモ二量体と結合しているDNAは折れ曲がり、通常とは異なる構造をとっている<ref name=ref4><pubmed>7637780</pubmed></ref>。  
 SRFコアホモ二量体とDNAとの複合体の構造がX線構造解析により明らかにされた<ref name=ref4><pubmed>7637780</pubmed></ref>。SRFコアドメインは、約90アミノ酸残基から成り、DNA結合領域、二量体形成、SRFコファクターとの相互作用部位を持つ。SRFコアの各サブユニットから伸びる両親媒性[[wikidepia:JA:α-ヘリックス|α-ヘリックス]](αI)が逆平行[[wikidepia:JA:コイルドコイル|コイルドコイル]]を形成し、CArGボックスの小溝内に平行に配置している<ref name=ref4><pubmed></pubmed></ref>。αIから伸びる塩基性N末端はDNAの主溝にはまり込んでいる<ref name=ref4><pubmed>7637780</pubmed></ref>。また、βI、βIIから成る4本の逆並行βシートが二量体形成のための中心的要素となっている<ref name=ref4><pubmed>7637780</pubmed></ref>。C末端は変則的なコイル構造と短いα-へリックス(αII)をとっている<ref name=ref4><pubmed>7637780</pubmed></ref>。したがって、SRF コアドメインはDNA結合領域であるコイルドコイルの下層、βシートから成る中間層、C末端領域からなる上層という3層から成る。SRFコアホモ二量体と結合しているDNAは折れ曲がり、通常とは異なる構造をとっている<ref name=ref4><pubmed>7637780</pubmed></ref>。  


== 脳内発現 ==
== 脳内発現 ==

案内メニュー