「レット症候群」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
==概要==
==概要==


 レット症候群は自閉症やてんかん、失調性歩行、特有の手もみ動作(常同運動)を主徴とする進行性の精神・神経疾患である。症候群名は、最初の症例報告が、1966年にウィーンの小児科医アンドレアス・レット(Andreas Rett)によってなされたことに由来する。X連鎖優性遺伝病(男性は胎生致死で患者は全員女性)であり、1999年、責任遺伝子がX染色体上のMECP2 (Methyl-CpG binding protein 2)であることが明らかにされた。この遺伝子がコードするMeCP2蛋白質にはメチル化された遺伝子のプロモーター領域に結合し、その遺伝子の発現を抑制する性質があることから、本症の神経病態は、神経細胞内のMeCP2の機能不全による遺伝子発現調節の破綻と考えられている。
 レット症候群は[[自閉症]]や[[てんかん]]、[[失調性歩行]]、特有の手もみ動作([[常同運動]])を主徴とする進行性の[[精神・神経疾患]]である。症候群名は、最初の症例報告が、1966年にウィーンの小児科医アンドレアス・レット(Andreas Rett)によってなされたことに由来する。X連鎖優性遺伝病(男性は胎生致死で患者は全員女性)であり、1999年、責任遺伝子がX染色体上の[[MECP2]] (methyl-CpG binding protein 2)であることが明らかにされた。この遺伝子がコードするMeCP2タンパク質には[[wikipedia:ja:|メチル化]]された遺伝子の[[プロモーター]]領域に結合し、その遺伝子の発現を抑制する性質があることから、本症の神経病態は、神経細胞内のMeCP2の機能不全による遺伝子発現調節の破綻と考えられている。


 近年、MeCP2は、神経細胞だけでなく、グリア細胞など種々の脳細胞でも発現していることが判明し、これらの全体が本症の精神・神経症状に関与している可能性が示唆されている。最近、本症候群患者の皮膚細胞からiPS細胞が作製されるようになった。今後、このようなiPS細胞を神経分化させたレット症候群患者由来の神経細胞を用いた研究により、神経病態のさらなる理解や治療薬の開発が期待されている。
 近年、MeCP2は、[[神経細胞]]だけでなく、[[グリア細胞]]など種々の脳細胞でも発現していることが判明し、これらの全体が本症の精神・神経症状に関与している可能性が示唆されている。最近、本症候群患者の[[wikipedia:ja:|皮膚]]細胞から[[iPS細胞]]が作製されるようになった。今後、このようなiPS細胞を神経分化させたレット症候群患者由来の神経細胞を用いた研究により、神経病態のさらなる理解や治療薬の開発が期待されている。


==臨床像==
==臨床像==


 生後しばらくは正常発達をとげるが、乳児期(生後6か月から1歳半)に異常に気付かれ、以後進行性の経過を示す。頚定は正常だが、おすわり・寝返りはやや遅れ、幼児期になると徐々に症状が進行し、本症の特徴である手もみ動作(常同運動)や自閉症状、てんかん発作、過呼吸、不眠などの症状が出現する。
 生後しばらくは正常発達をとげるが、乳児期(生後6か月から1歳半)に異常に気付かれ、以後進行性の経過を示す。[[wikipedia:ja:|頚定]]は正常だが、[[wikipedia:ja:|おすわり]]・[[wikipedia:ja:|寝返り]]はやや遅れ、幼児期になると徐々に症状が進行し、本症の特徴である手もみ動作(常同運動)や自閉症状、てんかん発作、過呼吸、[[不眠]]などの症状が出現する。


 小児期になると進行が緩やかになるが、成人期には筋緊張が低下傾向から亢進傾向に変わり、運動の減少がみられ、車いすでの生活が必要となる。さらにパーキンソン病様症状に発展することもある<ref><pubmed> 17160339 </pubmed></ref>。
 小児期になると進行が緩やかになるが、成人期には筋緊張が低下傾向から亢進傾向に変わり、運動の減少がみられ、車いすでの生活が必要となる。さらに[[パーキンソン病]]様症状に発展することもある<ref><pubmed> 17160339 </pubmed></ref>。


===レット症候群の責任遺伝子===
===レット症候群の責任遺伝子===


 レット症候群の発症率は女児10,000人に1人といわれている。レット症候群の原因遺伝子は、家系解析によりX染色体長腕末端Xq28領域に存在するMECP2遺伝子であることが判明している。典型的なレット症候群患者の80%がこの遺伝子の変異を有する。本症候群と同様の症状を呈する患者の中に、CDKL5(cyclin-dependent kinase-like 5)遺伝子の変異を持つ患者も報告されている<ref><pubmed> 18948693 </pubmed></ref>。
 レット症候群の発症率は女児10,000人に1人といわれている。レット症候群の原因遺伝子は、家系解析により[[X染色体]]長腕末端Xq28領域に存在するMECP2遺伝子であることが判明している。典型的なレット症候群患者の80%がこの遺伝子の変異を有する。本症候群と同様の症状を呈する患者の中に、[[CDKL5]](cyclin-dependent kinase-like 5)遺伝子の変異を持つ患者も報告されている<ref><pubmed> 18948693 </pubmed></ref>。


===患者におけるMECP2遺伝子の変異===
===患者におけるMECP2遺伝子の変異===


 MECP2遺伝子において、現在までに300を超える様々な変異が報告されてきた。また、変異のタイプにより正常なMeCP2蛋白質の機能への影響が異なることが明らかにされてきた。一方、本症候群では、患者ごとに重症度や臨床経過に大きな差異があることが知られている。従って、本症患者の臨床的差異の要因の1つに、遺伝子変異の違いが想定されている。例えば、MeCP2のN末側領域(核内移行シグナル)の欠損(フレームシフト)変異はミスセンス変異と比較して重篤な症状を示す。例えば、ミスセンス変異の1つであるR133C変異は部分的に蛋白質機能が保たれているため患者は比較的軽症であるのに対し、欠損変異である能R270X変異の患者は重篤な経過を辿る<ref name=ref3><pubmed> 17988628 </pubmed></ref>。
 MECP2遺伝子において、現在までに300を超える様々な変異が報告されてきた。また、変異のタイプにより正常なMeCP2タンパク質の機能への影響が異なることが明らかにされてきた。一方、本症候群では、患者ごとに重症度や臨床経過に大きな差異があることが知られている。従って、本症患者の臨床的差異の要因の1つに、遺伝子変異の違いが想定されている。例えば、MeCP2のN末側領域([[wikipedia:ja:|核内移行シグナル]])の欠損([[wikipedia:ja:フレームシフト変異|フレームシフト)変異]]は[[wikipedia:ja:|ミスセンス変異]]と比較して重篤な症状を示す。例えば、ミスセンス変異の1つであるR133C変異は部分的にタンパク質機能が保たれているため患者は比較的軽症であるのに対し、欠損変異である能R270X変異の患者は重篤な経過を辿る<ref name=ref3><pubmed> 17988628 </pubmed></ref>。


===X染色体不活化の臨床的影響===
===X染色体不活化の臨床的影響===


 レット症候群患者の重症度に影響を与える第2の要因としてX染色体不活化の影響がある。X染色体不活化とは、女性の父由来・母由来の2本のX染色体はどちらか1本がランダムに不活化される女性特有の現象のことをいう。多くの女性では、父由来Xが不活化された細胞と母由来Xが不活化された細胞は半々に存在するが、一部の女性ではどちらかの細胞が非常に多くなっている。レット症候群患者集団(全員女性)においても、正常女性集団と同様に、①半々に存在する患者、②父由来Xが不活化された細胞が多めの患者、③母由来Xが不活化された細胞が多めの患者、の3タイプが存在する。しかしながら、本症患者の多くは、父由来のX染色体上にMECP2遺伝子変異を有するため、①の患者は中等度の臨床症状、②の患者は軽症(変異MECP2のある父由来のXが不活化された細胞の多いため)、③の患者は重症(正常MECP2を有する母由来のXが不活化された細胞の多いため)、となる傾向になると考えられている<ref name=ref3 />。
 レット症候群患者の重症度に影響を与える第2の要因としてX染色体不活化の影響がある。[[X染色体]]不活化とは、女性の父由来・母由来の2本のX染色体はどちらか1本がランダムに不活化される女性特有の現象のことをいう。多くの女性では、父由来Xが不活化された細胞と母由来Xが不活化された細胞は半々に存在するが、一部の女性ではどちらかの細胞が非常に多くなっている。レット症候群患者集団(全員女性)においても、正常女性集団と同様に、①半々に存在する患者、②父由来Xが不活化された細胞が多めの患者、③母由来Xが不活化された細胞が多めの患者、の3タイプが存在する。しかしながら、本症患者の多くは、父由来のX染色体上にMECP2遺伝子変異を有するため、①の患者は中等度の臨床症状、②の患者は軽症(変異MECP2のある父由来のXが不活化された細胞の多いため)、③の患者は重症(正常MECP2を有する母由来のXが不活化された細胞の多いため)、となる傾向になると考えられている<ref name=ref3 />。


==MeCP2蛋白質の機能==
==MeCP2タンパク質の機能==


 MeCP2(Methyl CpG binding protein 2)はメチル化修飾されたDNAに特異的に結合し、Sin3aやヒストン脱アセチル化酵素(HDACs)などと複合体を形成することで遺伝子発現の抑制に関与していることが知られている。このようなDNAやヒストン蛋白質の修飾に依存する遺伝子発現制御機構をエピジェネティクス機構とよんでいる。
 MeCP2(methyl CpG binding protein 2)はメチル化修飾されたDNAに特異的に結合し、[[wikipedia:ja:|Sin3a]]や[[ヒストン脱アセチル化酵素]](HDACs)などと複合体を形成することで遺伝子発現の抑制に関与していることが知られている。このようなDNAや[[wikipedia:ja:|ヒストン]]タンパク質の修飾に依存する[[wikipedia:ja:|遺伝子発現]]制御機構を[[エピジェネティクス機構]]とよんでいる。


 またMeCP2は、c-Ski、NcoR、DNAメチルトランスフェラーゼ(DNMTs)やATRXなどさまざまなタンパク質と相互作用することから、クロマチンの凝集を引き起こすことで転写が不活性な状態を作り上げていると考えられている。
 またMeCP2は、[[c-Ski]]、[[NcoR]]、[[DNAメチルトランスフェラーゼ]](DNMTs)や[[ATRX]]などさまざまなタンパク質と相互作用することから、[[クロマチン]]の凝集を引き起こすことで[[転写]]が不活性な状態を作り上げていると考えられている。


 MeCP2によって転写が抑制される標的遺伝子の探索が盛んに行われており、これまでに脳由来神経栄養因子であるBDNF、ゲノム刷り込み遺伝子DLX5やインスリン様成長因子結合蛋白をコードするIGFBP3、シナプス間の接着に関与するPCDHB1などが報告されている。しかしながら2008年、Mecp2ノックアウトマウスとMecp2過剰発現マウスを用いた発現マイクロアレイを用いた解析から、視床下部において数千の遺伝子が調節を受けていること, そしてその標的遺伝子の85%はMeCP2により転写が活性化されているという報告がなされた。MeCP2が直接、遺伝子のプロモーター領域に結合し、転写因子CREB1などとともに標的遺伝子の発現を活性化することも報告され、MeCP2が転写抑制・活性化双方に関与していることが示唆されている<ref name=ref4><pubmed> 21632916 </pubmed></ref>。
 MeCP2によって転写が抑制される標的遺伝子の探索が盛んに行われており、これまでに[[脳由来神経栄養因子]](BDNF)、[[ゲノム刷り込み]]遺伝子[[DLX5]]や[[インスリン様成長因子結合タンパク質]]IGFBP3、[[シナプス]]間の接着に関与する[[PCDHB1]]などが報告されている。しかしながら2008年、Mecp2[[ノックアウトマウス]]とMecp2過剰発現マウスを用いた発現マイクロアレイを用いた解析から、[[視床下部]]において数千の遺伝子が調節を受けていること, そしてその標的遺伝子の85%はMeCP2により転写が活性化されているという報告がなされた。MeCP2が直接、遺伝子のプロモーター領域に結合し、[[転写因子]][[CREB1]]などとともに標的遺伝子の発現を活性化することも報告され、MeCP2が転写抑制・活性化双方に関与していることが示唆されている<ref name=ref4><pubmed> 21632916 </pubmed></ref>。


==レット症候群の神経病態==
==レット症候群の神経病態==

案内メニュー