「サザンブロット」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:
4) メンブランへの転写 アガロースゲル内のDNAを泳動パターンを維持したままを毛細管現象を利用してナイロン製やニトロセルロース製のメンブランへ転写する。この作業には数時間から一晩要するため、近年は電気的に転写するエレクトロブロット、吸引によるバキュームブロットなど短時間で転写できる装置も市販されている。  
4) メンブランへの転写 アガロースゲル内のDNAを泳動パターンを維持したままを毛細管現象を利用してナイロン製やニトロセルロース製のメンブランへ転写する。この作業には数時間から一晩要するため、近年は電気的に転写するエレクトロブロット、吸引によるバキュームブロットなど短時間で転写できる装置も市販されている。  


5) プローブとの反応 特定の塩基配列を検出するための標識(ラベリング)された核酸をプローブと呼び、標識には32Pなどの放射性同位体の他、アルカリフォスファターゼなどの酵素が利用される。プローブに用いる核酸はDNA, RNAいずれも使用でき、それぞれDNAプローブ、RNAプローブと呼ばれる。RNAプローブはDNAプローブに比してメンブラン上のDNAとの結合力が高いが扱いにくいためDNAプローブが頻用される。ただしDNAプローブは使用前に1本鎖にする必要がある。 これらのプローブをDNAを転写したメンブラン上で反応させることで相補的な配列をもつDNAとプローブが2本鎖を形成する。 なお、このときに塩濃度を高くすることでプローブの配列と一致しないまでも相同性の高い配列を持つDNAは2本鎖を形成する。これを利用すれば異なる動物種間の遺伝子、あるいは相同遺伝子を検出することが出来る場合もある。  
5) プローブとの反応 特定の塩基配列を検出するための標識(ラベリング)された核酸をプローブと呼び、
 
[[Image:サザンブロット図2.jpg|thumb|right|400px]]
<div><br>
<br>
 
標識には32Pなどの放射性同位体の他、アルカリフォスファターゼなどの酵素が利用される。プローブに用いる核酸はDNA, RNAいずれも使用でき、それぞれDNAプローブ、RNAプローブと呼ばれる。RNAプローブはDNAプローブに比してメンブラン上のDNAとの結合力が高いが扱いにくいためDNAプローブが頻用される。ただしDNAプローブは使用前に1本鎖にする必要がある。 これらのプローブをDNAを転写したメンブラン上で反応させることで相補的な配列をもつDNAとプローブが2本鎖を形成する。 なお、このときに塩濃度を高くすることでプローブの配列と一致しないまでも相同性の高い配列を持つDNAは2本鎖を形成する。これを利用すれば異なる動物種間の遺伝子、あるいは相同遺伝子を検出することが出来る場合もある。  


6) メンブランの洗浄 メンブラン上のDNAに結合しなかったプローブを洗浄する。この際にも洗浄液の塩濃度を高くすることでプローブと多少配列が異なるDNA間の2本鎖は結合したままにすることが出来る。  
6) メンブランの洗浄 メンブラン上のDNAに結合しなかったプローブを洗浄する。この際にも洗浄液の塩濃度を高くすることでプローブと多少配列が異なるDNA間の2本鎖は結合したままにすることが出来る。  


7) 検出 プローブ標識に放射性同位体を用いた場合はX線フィルムをを用いたオートラジオグラフィーでプローブの位置を検出する。また、プローブをアルカリホスファターゼ標識した場合は発光基質を反応させその発光をフィルムで検出するほか、CCDカメラなどの検出器なども用いられる。[[Image:サザンブロット図2.jpg|thumb|right|400px]]
7) 検出 プローブ標識に放射性同位体を用いた場合はX線フィルムをを用いたオートラジオグラフィーでプローブの位置を検出する。また、プローブをアルカリホスファターゼ標識した場合は発光基質を反応させその発光をフィルムで検出するほか、CCDカメラなどの検出器なども用いられる。  


== ノーザンブロットとの相違点  ==
== ノーザンブロットとの相違点  ==
33行目: 39行目:
=== DNAメチル化状態の解析  ===
=== DNAメチル化状態の解析  ===


ゲノムDNAメチル化は遺伝子発現における調節因子であるため、その解析は遺伝子発現制御の分野では重要である。 制限酵素HpaIIとMspIは同じ5'- CCGG - 3'を認識し切断するが、メチル化感受性制限酵素であるHpaIIは2番目のCがメチル化された配列 (5'- CmCGG - 3')は切断することが出来ない。一方MspIはメチル化状態にかかわらず切断することが出来る。そこで、これらの制限酵素を利用したサザンブロットで特定のCpG配列のメチル化状態を調べることが出来る(図)。
ゲノムDNAメチル化は遺伝子発現における調節因子であるため、その解析は遺伝子発現制御の分野では重要である。 制限酵素HpaIIとMspIは同じ5'- CCGG - 3'を認識し切断するが、メチル化感受性制限酵素であるHpaIIは2番目のCがメチル化された配列 (5'- CmCGG - 3')は切断することが出来ない。一方MspIはメチル化状態にかかわらず切断することが出来る。そこで、これらの制限酵素を利用したサザンブロットで特定のCpG配列のメチル化状態を調べることが出来る(図)。[[Image:サザンブロット図3.jpg|thumb|left|400px]]
</div>
226

回編集

案内メニュー