226
回編集
細編集の要約なし |
細編集の要約なし |
||
35行目: | 35行目: | ||
=== 遺伝子変異の検出 === | === 遺伝子変異の検出 === | ||
サザンブロットにより検出されるバンドの大きさの変化で遺伝子の変異を検出することが出来る。例えば遺伝子改変動物をジーンターゲティング法で作製した場合には、そのバンドの大きさで遺伝子型(野生型、ヘテロ、ホモ)の判別に用いられる(図)。 | サザンブロットにより検出されるバンドの大きさの変化で遺伝子の変異を検出することが出来る。例えば遺伝子改変動物をジーンターゲティング法で作製した場合には、そのバンドの大きさで遺伝子型(野生型、ヘテロ、ホモ)の判別に用いられる(図)。[[Image:サザンブロット図3.jpg|right|400px]] | ||
=== DNAメチル化状態の解析 === | === DNAメチル化状態の解析 === | ||
ゲノムDNAメチル化は遺伝子発現における調節因子であるため、その解析は遺伝子発現制御の分野では重要である。 制限酵素HpaIIとMspIは同じ5'- CCGG - 3'を認識し切断するが、メチル化感受性制限酵素であるHpaIIは2番目のCがメチル化された配列 (5'- CmCGG - 3')は切断することが出来ない。一方MspIはメチル化状態にかかわらず切断することが出来る。そこで、これらの制限酵素を利用したサザンブロットで特定のCpG配列のメチル化状態を調べることが出来る(図)。 | ゲノムDNAメチル化は遺伝子発現における調節因子であるため、その解析は遺伝子発現制御の分野では重要である。 制限酵素HpaIIとMspIは同じ5'- CCGG - 3'を認識し切断するが、メチル化感受性制限酵素であるHpaIIは2番目のCがメチル化された配列 (5'- CmCGG - 3')は切断することが出来ない。一方MspIはメチル化状態にかかわらず切断することが出来る。そこで、これらの制限酵素を利用したサザンブロットで特定のCpG配列のメチル化状態を調べることが出来る(図)。 | ||
</div> | </div> |
回編集