32
回編集
Yoshikatsuaikawa (トーク | 投稿記録) 細編集の要約なし |
Yoshikatsuaikawa (トーク | 投稿記録) 細編集の要約なし |
||
11行目: | 11行目: | ||
== テタヌス毒素の構造名称について == | == テタヌス毒素の構造名称について == | ||
テタヌス毒素の遺伝子は、''Clostridium tetani ''において75 kbのプラスミド上にコードされ、分子量150 kDaの単純タンパク質を合成する。合成された1本のポリペプチド鎖(1315アミノ酸)は不活性であるが、トリプシン様のタンパク質分解酵素により457番目のAlaから461番目のAspまでの間で限定分解を受け、N末端側の分子量50 kDaの軽鎖(449アミノ酸)とC末端側の分子量100 kDaの重鎖(857アミノ酸)となり活性型となる。両鎖は、1つのジスルフィド結合と非共有結合により繋がっている。翻訳後の分解が正しく行われた場合にのみ培養液中に放出される。<br> テタヌス毒素の構造名称については、破傷風菌と同属であるボツリヌス菌が産出するボツリヌス毒素で提唱された名称と、第8回国際破傷風会議(1987)で採択された名称とがある。前者の場合、軽鎖を(L)、重鎖を(H)とする。また重鎖(H)は、そのN末端側の50 kDaのαヘリックスドメインを(H<sub>N</sub>)、そのC末端側(865-1315)にある50 kDaを(H<sub>C</sub>)とし、さらにH<sub>C</sub>には分子量25 kDaのH<sub>C</sub>NとH<sub>C</sub>Cのサブドメインに分けられる。一方後者の場合、テタヌス毒素をパパイン処理するとC末端側50 kDaのペプチド断片とN末端側100 kDaのペプチド断片に分離されたことから、重鎖のC末端側50 kDaをFragment C(Frg C)、N末端側50 kDaをFragment B (Frg B)、さらに軽鎖をFragment A (Frg A) と呼称している。テタヌス毒素と各血清型のボツリヌス毒素との遺伝子レベルでの比較では、全体の相同性は~35%と低い。各ドメインにはそれぞれ異なる機能があり、N末端側のLドメインは金属タンパク質分解活性をもち、H<sub>N</sub>ドメインは膜移行に、そしてH<sub>C</sub>ドメインは結合に、それぞれ関与している (図1)。 [[ファイル:図1.jpg| | テタヌス毒素の遺伝子は、''Clostridium tetani ''において75 kbのプラスミド上にコードされ、分子量150 kDaの単純タンパク質を合成する。合成された1本のポリペプチド鎖(1315アミノ酸)は不活性であるが、トリプシン様のタンパク質分解酵素により457番目のAlaから461番目のAspまでの間で限定分解を受け、N末端側の分子量50 kDaの軽鎖(449アミノ酸)とC末端側の分子量100 kDaの重鎖(857アミノ酸)となり活性型となる。両鎖は、1つのジスルフィド結合と非共有結合により繋がっている。翻訳後の分解が正しく行われた場合にのみ培養液中に放出される。<br> テタヌス毒素の構造名称については、破傷風菌と同属であるボツリヌス菌が産出するボツリヌス毒素で提唱された名称と、第8回国際破傷風会議(1987)で採択された名称とがある。前者の場合、軽鎖を(L)、重鎖を(H)とする。また重鎖(H)は、そのN末端側の50 kDaのαヘリックスドメインを(H<sub>N</sub>)、そのC末端側(865-1315)にある50 kDaを(H<sub>C</sub>)とし、さらにH<sub>C</sub>には分子量25 kDaのH<sub>C</sub>NとH<sub>C</sub>Cのサブドメインに分けられる。一方後者の場合、テタヌス毒素をパパイン処理するとC末端側50 kDaのペプチド断片とN末端側100 kDaのペプチド断片に分離されたことから、重鎖のC末端側50 kDaをFragment C(Frg C)、N末端側50 kDaをFragment B (Frg B)、さらに軽鎖をFragment A (Frg A) と呼称している。テタヌス毒素と各血清型のボツリヌス毒素との遺伝子レベルでの比較では、全体の相同性は~35%と低い。各ドメインにはそれぞれ異なる機能があり、N末端側のLドメインは金属タンパク質分解活性をもち、H<sub>N</sub>ドメインは膜移行に、そしてH<sub>C</sub>ドメインは結合に、それぞれ関与している (図1)。 [[ファイル:図1.jpg|left|400px|]] | ||
== 軽鎖(L)立体構造と機能 == | == 軽鎖(L)立体構造と機能 == | ||
他のボツリヌス毒素の軽鎖(L)と同様に、テタヌス毒素の軽鎖(L)は、亜鉛依存的な金属タンパク質分解酵素として作用し毒性を引き起こす。テタヌス毒素の軽鎖(L)は、ボツリヌス毒素Bと同様にシナプス小胞の膜蛋白質のv-SNAREであるSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のGln(76)とPhe(77)の間の限定分解を行う(図2)。その結果、シナプス小胞とシナプス前膜とのドッキングが阻害され、抑制性神経伝達物質であるGABAやGlycineなどの放出が抑制される。これがテタヌス毒素によるシナプス前抑制の分子機構である。ただし、図3に示すようにSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のアイソフォームの中には、テタヌス毒素に切断されないものもある。テタヌス毒素の軽鎖(L)の触媒ドメインの二量体構造とその活性部位を示す。テタヌス毒素の軽鎖(L)の活性部位は、基質となるタンパク質が近づきやすい溝の内部に位置し、亜鉛に結合するモチーフであるHExxH(233-237)が中央部となるように正に荷電した亜鉛と配位結合する。つまり、亜鉛は2つのHisのイミダゾ-ル環(His(232)とHis(236))、そしてGlu(270)などのアミノ酸、さらにGlu(233)と強固な水素結合を形成する求核性の水分子、といった4つと相互作用している。特にこのモチーフ内にあるグルタミン酸は、それに結合している水分子が直接的にタンパク質の加水分解反応に関与するため特に重要である。[[ファイル:図2.jpg| | 他のボツリヌス毒素の軽鎖(L)と同様に、テタヌス毒素の軽鎖(L)は、亜鉛依存的な金属タンパク質分解酵素として作用し毒性を引き起こす。テタヌス毒素の軽鎖(L)は、ボツリヌス毒素Bと同様にシナプス小胞の膜蛋白質のv-SNAREであるSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のGln(76)とPhe(77)の間の限定分解を行う(図2)。その結果、シナプス小胞とシナプス前膜とのドッキングが阻害され、抑制性神経伝達物質であるGABAやGlycineなどの放出が抑制される。これがテタヌス毒素によるシナプス前抑制の分子機構である。ただし、図3に示すようにSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のアイソフォームの中には、テタヌス毒素に切断されないものもある。テタヌス毒素の軽鎖(L)の触媒ドメインの二量体構造とその活性部位を示す。テタヌス毒素の軽鎖(L)の活性部位は、基質となるタンパク質が近づきやすい溝の内部に位置し、亜鉛に結合するモチーフであるHExxH(233-237)が中央部となるように正に荷電した亜鉛と配位結合する。つまり、亜鉛は2つのHisのイミダゾ-ル環(His(232)とHis(236))、そしてGlu(270)などのアミノ酸、さらにGlu(233)と強固な水素結合を形成する求核性の水分子、といった4つと相互作用している。特にこのモチーフ内にあるグルタミン酸は、それに結合している水分子が直接的にタンパク質の加水分解反応に関与するため特に重要である。[[ファイル:図2.jpg|left|400px|]] [[ファイル:図3.jpg|center|400px|]] | ||
== 重鎖(H)構造と機能 == | == 重鎖(H)構造と機能 == | ||
23行目: | 23行目: | ||
== テタヌス毒素の作用機序 == | == テタヌス毒素の作用機序 == | ||
テタヌス毒素は神経筋接合部から神経終末膜を介して神経内に取り込まれる。テタヌス毒素は逆行性輸送され、脊髄前角に到達し、細胞膜を通過しシナプス前膜を通りさらに上位の中枢へと運搬される。そこで抑制性シナプスを遮断し、痙性麻痺を引き起こす。ついで興奮性シナプスも遮断し、筋は拘縮した状態となる。ちなみにこれは筋の弛緩を発生させるボツリヌストキシンの作用と逆となる。テタヌス毒素は、神経細胞に対して、(1) 毒素の結合、(2) 毒素のエンドサイトーシス、(3) 膜からの細胞質への移行、(4) 標的タンパク質であるVAMPの分解、といった4段階を介して作用する(図4)。現在もなおテタヌス毒素の受容体については不明であるが、テタヌス毒素のHcCドメインには、2つのガングリオシド結合部位がこれまでに同定され、ポリシアロガングリオシド分子と糖タンパク質にそれぞれ結合することが考えられている。実際にテタヌス毒素はGPI-アンカー型糖タンパク質と脂質ラフトに結合する。図3に示したように、運動神経終末での形質膜上に発現する受容体を介したエンドサイトーシスにより取り込まれるボツリナム毒素とは異なり、テタヌス毒素は脂質ラフトやガングリオシドであるGD1bを含む脂質タンパク質受容体複合体に結合するクラスリン依存的なエンドサイトーシスにより内部に入る。クラスリン被覆小胞によりいったん取り込まれたテタヌス毒素は、神経中枢の神経細胞体へ逆行性に運ばれ、さらにシナプスを越えて高次神経細胞のシナプス前部に到達する過程(Transcytosis)にHcが関与している。標識されたHcは取り込まれた後も中性を保ったコンパートメントで細胞体へと逆行性に運搬され、運動神経の樹状突起に集積される。BDNFやGDNFなどの神経栄養因子と比較すると、運搬速度や樹状突起への集積速度は同じ(1 μm/sec)であるが、シナプスを越えて次のシナプス前部への移行はHcの方がほぼ倍の速度で行われることが明らかにされた。[[ファイル:図4.jpg| | テタヌス毒素は神経筋接合部から神経終末膜を介して神経内に取り込まれる。テタヌス毒素は逆行性輸送され、脊髄前角に到達し、細胞膜を通過しシナプス前膜を通りさらに上位の中枢へと運搬される。そこで抑制性シナプスを遮断し、痙性麻痺を引き起こす。ついで興奮性シナプスも遮断し、筋は拘縮した状態となる。ちなみにこれは筋の弛緩を発生させるボツリヌストキシンの作用と逆となる。テタヌス毒素は、神経細胞に対して、(1) 毒素の結合、(2) 毒素のエンドサイトーシス、(3) 膜からの細胞質への移行、(4) 標的タンパク質であるVAMPの分解、といった4段階を介して作用する(図4)。現在もなおテタヌス毒素の受容体については不明であるが、テタヌス毒素のHcCドメインには、2つのガングリオシド結合部位がこれまでに同定され、ポリシアロガングリオシド分子と糖タンパク質にそれぞれ結合することが考えられている。実際にテタヌス毒素はGPI-アンカー型糖タンパク質と脂質ラフトに結合する。図3に示したように、運動神経終末での形質膜上に発現する受容体を介したエンドサイトーシスにより取り込まれるボツリナム毒素とは異なり、テタヌス毒素は脂質ラフトやガングリオシドであるGD1bを含む脂質タンパク質受容体複合体に結合するクラスリン依存的なエンドサイトーシスにより内部に入る。クラスリン被覆小胞によりいったん取り込まれたテタヌス毒素は、神経中枢の神経細胞体へ逆行性に運ばれ、さらにシナプスを越えて高次神経細胞のシナプス前部に到達する過程(Transcytosis)にHcが関与している。標識されたHcは取り込まれた後も中性を保ったコンパートメントで細胞体へと逆行性に運搬され、運動神経の樹状突起に集積される。BDNFやGDNFなどの神経栄養因子と比較すると、運搬速度や樹状突起への集積速度は同じ(1 μm/sec)であるが、シナプスを越えて次のシナプス前部への移行はHcの方がほぼ倍の速度で行われることが明らかにされた。[[ファイル:図4.jpg|left|300px|]] | ||
== 関連項目 == | == 関連項目 == |
回編集