「テタヌス毒素」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
29行目: 29行目:
==  テタヌス毒素の構造名称について    ==
==  テタヌス毒素の構造名称について    ==


  テタヌス毒素の遺伝子は、''Clostridium tetani ''において75 kbのプラスミド上にコードされ、分子量150 kDaの単純タンパク質を合成する。合成された1本のポリペプチド鎖(1315アミノ酸)は不活性であるが、トリプシン様のタンパク質分解酵素により457番目のAlaから461番目のAspまでの間で限定分解を受け、N末端側の分子量50 kDaの軽鎖(449アミノ酸)とC末端側の分子量100 kDaの重鎖(857アミノ酸)となり活性型となる。両鎖は、1つのジスルフィド結合と非共有結合により繋がっている。翻訳後の分解が正しく行われた場合にのみ培養液中に放出される。<br>  テタヌス毒素の構造名称については、破傷風菌と同属であるボツリヌス菌が産出するボツリヌス毒素で提唱された名称と、第8回国際破傷風会議(1987)で採択された名称とがある。前者の場合、軽鎖を(L)、重鎖を(H)とする。また重鎖(H)は、そのN末端側の50 kDaのαヘリックスドメインを(H<sub>N</sub>)、そのC末端側(865-1315)にある50 kDaを(H<sub>C</sub>)とし、さらにH<sub>C</sub>には分子量25 kDaのH<sub>C</sub>NとH<sub>C</sub>Cのサブドメインに分けられる。一方後者の場合、テタヌス毒素をパパイン処理するとC末端側50 kDaのペプチド断片とN末端側100 kDaのペプチド断片に分離されたことから、重鎖のC末端側50 kDaをFragment C(Frg C)、N末端側50 kDaをFragment B (Frg B)、さらに軽鎖をFragment A (Frg A) と呼称している。テタヌス毒素と各血清型のボツリヌス毒素との遺伝子レベルでの比較では、全体の相同性は~35%と低い。各ドメインにはそれぞれ異なる機能があり、N末端側のLドメインは金属タンパク質分解活性をもち、H<sub>N</sub>ドメインは膜移行に、そしてH<sub>C</sub>ドメインは結合に、それぞれ関与している (図1)。 [[Image:図1.jpg|center|400px]]  
  テタヌス毒素の遺伝子は、''Clostridium tetani ''において75 kbのプラスミド上にコードされ、分子量150 kDaの単純タンパク質を合成する。<ref><pubmed> 3536478 </pubmed></ref>。合成された1本のポリペプチド鎖(1315アミノ酸)は不活性であるが、トリプシン様のタンパク質分解酵素により457番目のAlaから461番目のAspまでの間で限定分解を受け、N末端側の分子量50 kDaの軽鎖(449アミノ酸)とC末端側の分子量100 kDaの重鎖(857アミノ酸)となり活性型となる。両鎖は、1つのジスルフィド結合と非共有結合により繋がっている。翻訳後の分解が正しく行われた場合にのみ培養液中に放出される。<br>  テタヌス毒素の構造名称については、破傷風菌と同属であるボツリヌス菌が産出するボツリヌス毒素で提唱された名称と、第8回国際破傷風会議(1987)で採択された名称とがある。前者の場合、軽鎖を(L)、重鎖を(H)とする。また重鎖(H)は、そのN末端側の50 kDaのαヘリックスドメインを(H<sub>N</sub>)、そのC末端側(865-1315)にある50 kDaを(H<sub>C</sub>)とし、さらにH<sub>C</sub>には分子量25 kDaのH<sub>C</sub>NとH<sub>C</sub>Cのサブドメインに分けられる。一方後者の場合、テタヌス毒素をパパイン処理するとC末端側50 kDaのペプチド断片とN末端側100 kDaのペプチド断片に分離されたことから、重鎖のC末端側50 kDaをFragment C(Frg C)、N末端側50 kDaをFragment B (Frg B)、さらに軽鎖をFragment A (Frg A) と呼称している。テタヌス毒素と各血清型のボツリヌス毒素との遺伝子レベルでの比較では、全体の相同性は~35%と低い。各ドメインにはそれぞれ異なる機能があり、N末端側のLドメインは金属タンパク質分解活性をもち、H<sub>N</sub>ドメインは膜移行に、そしてH<sub>C</sub>ドメインは結合に、それぞれ関与している (図1)。 [[Image:図1.jpg|center|400px]]  


== &nbsp;軽鎖(L)立体構造と機能&nbsp;  ==
== &nbsp;軽鎖(L)立体構造と機能&nbsp;  ==


  他のボツリヌス毒素の軽鎖(L)と同様に、テタヌス毒素の軽鎖(L)は、亜鉛依存的な金属タンパク質分解酵素として作用し毒性を引き起こす。テタヌス毒素の軽鎖(L)は、ボツリヌス毒素Bと同様にシナプス小胞の膜蛋白質のv-SNAREであるSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のGln(76)とPhe(77)の間の限定分解を行う(図2)。その結果、シナプス小胞とシナプス前膜とのドッキングが阻害され、抑制性神経伝達物質であるGABAやGlycineなどの放出が抑制される。これがテタヌス毒素によるシナプス前抑制の分子機構である。ただし、図3に示すようにSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のアイソフォームの中には、テタヌス毒素に切断されないものもある。テタヌス毒素の軽鎖(L)の触媒ドメインの二量体構造とその活性部位を示す。テタヌス毒素の軽鎖(L)の活性部位は、基質となるタンパク質が近づきやすい溝の内部に位置し、亜鉛に結合するモチーフであるHExxH(233-237)が中央部となるように正に荷電した亜鉛と配位結合する。つまり、亜鉛は2つのHisのイミダゾ-ル環(His(232)とHis(236))、そしてGlu(270)などのアミノ酸、さらにGlu(233)と強固な水素結合を形成する求核性の水分子、といった4つと相互作用している。特にこのモチーフ内にあるグルタミン酸は、それに結合している水分子が直接的にタンパク質の加水分解反応に関与するため特に重要である。[[Image:図2.jpg|left|400px]] [[Image:図3.jpg|center|400px]]  
  他のボツリヌス毒素の軽鎖(L)と同様に、テタヌス毒素の軽鎖(L)は、亜鉛依存的な金属タンパク質分解酵素として作用し毒性を引き起こす。テタヌス毒素の軽鎖(L)は、ボツリヌス毒素Bと同様にシナプス小胞の膜蛋白質のv-SNAREであるSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のGln(76)とPhe(77)の間の限定分解を行う(図2)。その結果、シナプス小胞とシナプス前膜とのドッキングが阻害され、抑制性神経伝達物質であるGABAやGlycineなどの放出が抑制される。これがテタヌス毒素によるシナプス前抑制の分子機構である。<ref><pubmed> 1331807 </pubmed><ref>。ただし、図3に示すようにSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のアイソフォームの中には、テタヌス毒素に切断されないものもある。<ref><pubmed> 10865130 </pubmed></ref>。テタヌス毒素の軽鎖(L)の触媒ドメインの二量体構造とその活性部位を示す。テタヌス毒素の軽鎖(L)の活性部位は、基質となるタンパク質が近づきやすい溝の内部に位置し、亜鉛に結合するモチーフであるHExxH(233-237)が中央部となるように正に荷電した亜鉛と配位結合する。つまり、亜鉛は2つのHisのイミダゾ-ル環(His(232)とHis(236))、そしてGlu(270)などのアミノ酸、さらにGlu(233)と強固な水素結合を形成する求核性の水分子、といった4つと相互作用している。特にこのモチーフ内にあるグルタミン酸は、それに結合している水分子が直接的にタンパク質の加水分解反応に関与するため特に重要である。<ref><pubmed> 15895988 </pubmed><ref>。<ref><pubmed> 15904688 </pubmed><ref>。[[Image:図2.jpg|left|400px]] [[Image:図3.jpg|center|400px]]  


== &nbsp;&nbsp;重鎖(H)構造と機能&nbsp;  ==
== &nbsp;&nbsp;重鎖(H)構造と機能&nbsp;  ==


  テタヌス毒素の重鎖(H)は、2つのサブドメインH<sub>N</sub>とH<sub>C</sub>に分けられる。テタヌス毒素重鎖(H)N末端側のH<sub>N</sub>は、ベシクル膜から軽鎖(L)を移行させることに関与しているが、疎水性が極めて高く、容易に不溶化沈殿するためにその構造解析が進んでいない。H<sub>C</sub>ドメインは神経筋接合部での神経終末へのテタヌス毒素の特異的な結合とその後の内部への取り込みに関与する。その結合には、神経細胞膜上に特にみられるポリシアロガングリオシド、グリコスフィンゴリン脂質と複合体を形成する。テタヌス毒素重鎖(H)C末端側H<sub>C</sub>の立体構造を右枠の中に示す。H<sub>C</sub>ドメインには、さらに2つのサブドメイン構造のH<sub>C</sub>NとH<sub>C</sub>Cから構成される。H<sub>C</sub>Nサブドメインはいくつかの炭水化物結合タンパク質(マメ科植物のレクチン等)と似たようなjelly-rollモチーフ内にβストランド構造を含む。H<sub>C</sub>Nのアミノ酸配列は、クロストリジウム属の中でも高度に保存されている。H<sub>C</sub>CサブドメインはIL-1やFGFといったタンパク質の認識と結合に関与するβシートが3つパックされたβ-trefoilという3つ葉状の構造を形成している。この配列はクロストリジウム属の中でも非常に保存性が低い。HCCサブドメインにはポリシアロガングリオシド(GD1bとGT1b)のオリゴ糖の部分に対して2つの結合部位があり、結合する部位(1281-1314)の中でもHis(1293)が関与する。  
  テタヌス毒素の重鎖(H)は、2つのサブドメインH<sub>N</sub>とH<sub>C</sub>に分けられる。テタヌス毒素重鎖(H)N末端側のH<sub>N</sub>は、ベシクル膜から軽鎖(L)を移行させることに関与しているが、疎水性が極めて高く、容易に不溶化沈殿するためにその構造解析が進んでいない。H<sub>C</sub>ドメインは神経筋接合部での神経終末へのテタヌス毒素の特異的な結合とその後の内部への取り込みに関与する。その結合には、神経細胞膜上に特にみられるポリシアロガングリオシド、グリコスフィンゴリン脂質と複合体を形成する。テタヌス毒素重鎖(H)C末端側H<sub>C</sub>の立体構造を右枠の中に示す。H<sub>C</sub>ドメインには、さらに2つのサブドメイン構造のH<sub>C</sub>NとH<sub>C</sub>Cから構成される。H<sub>C</sub>Nサブドメインはいくつかの炭水化物結合タンパク質(マメ科植物のレクチン等)と似たようなjelly-rollモチーフ内にβストランド構造を含む。H<sub>C</sub>Nのアミノ酸配列は、クロストリジウム属の中でも高度に保存されている。H<sub>C</sub>CサブドメインはIL-1やFGFといったタンパク質の認識と結合に関与するβシートが3つパックされたβ-trefoilという3つ葉状の構造を形成している。この配列はクロストリジウム属の中でも非常に保存性が低い。HCCサブドメインにはポリシアロガングリオシド(GD1bとGT1b)のオリゴ糖の部分に対して2つの結合部位があり、結合する部位(1281-1314)の中でもHis(1293)が関与する。<ref><pubmed> 10722735 </pubmed><ref>。<ref><pubmed> 11418600 </pubmed><ref>。


== &nbsp;テタヌス毒素の作用機序&nbsp;  ==
== &nbsp;テタヌス毒素の作用機序&nbsp;  ==
32

回編集

案内メニュー