32
回編集
Yoshikatsuaikawa (トーク | 投稿記録) 細編集の要約なし |
Yoshikatsuaikawa (トーク | 投稿記録) 細編集の要約なし |
||
33行目: | 33行目: | ||
== 軽鎖(L)立体構造と機能 == | == 軽鎖(L)立体構造と機能 == | ||
他のボツリヌス毒素の軽鎖(L)と同様に、テタヌス毒素の軽鎖(L)は、亜鉛依存的な金属タンパク質分解酵素として作用し毒性を引き起こす。テタヌス毒素の軽鎖(L)は、ボツリヌス毒素Bと同様にシナプス小胞の膜蛋白質のv-SNAREであるSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のGln(76)とPhe(77)の間の限定分解を行う(図2)。その結果、シナプス小胞とシナプス前膜とのドッキングが阻害され、抑制性神経伝達物質であるGABAやGlycineなどの放出が抑制される。これがテタヌス毒素によるシナプス前抑制の分子機構である。<ref><pubmed> 1331807 </pubmed><ref>。ただし、図3に示すようにSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のアイソフォームの中には、テタヌス毒素に切断されないものもある。<ref><pubmed> 10865130 </pubmed></ref>。テタヌス毒素の軽鎖(L)の触媒ドメインの二量体構造とその活性部位を示す。テタヌス毒素の軽鎖(L)の活性部位は、基質となるタンパク質が近づきやすい溝の内部に位置し、亜鉛に結合するモチーフであるHExxH(233-237)が中央部となるように正に荷電した亜鉛と配位結合する。つまり、亜鉛は2つのHisのイミダゾ-ル環(His(232)とHis(236))、そしてGlu(270)などのアミノ酸、さらにGlu(233)と強固な水素結合を形成する求核性の水分子、といった4つと相互作用している。特にこのモチーフ内にあるグルタミン酸は、それに結合している水分子が直接的にタンパク質の加水分解反応に関与するため特に重要である。<ref><pubmed> 15895988 </pubmed><ref>。<ref><pubmed> 15904688 </pubmed><ref>。[[Image:図2.jpg|left|400px]] [[Image:図3.jpg|center|400px]] | 他のボツリヌス毒素の軽鎖(L)と同様に、テタヌス毒素の軽鎖(L)は、亜鉛依存的な金属タンパク質分解酵素として作用し毒性を引き起こす。テタヌス毒素の軽鎖(L)は、ボツリヌス毒素Bと同様にシナプス小胞の膜蛋白質のv-SNAREであるSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のGln(76)とPhe(77)の間の限定分解を行う(図2)。その結果、シナプス小胞とシナプス前膜とのドッキングが阻害され、抑制性神経伝達物質であるGABAやGlycineなどの放出が抑制される。これがテタヌス毒素によるシナプス前抑制の分子機構である。<ref><pubmed> 1331807 </pubmed><ref>。ただし、図3に示すようにSynaptobrevin-2/vesicle-associated membrane protein (VAMP)のアイソフォームの中には、テタヌス毒素に切断されないものもある。<ref><pubmed> 10865130 </pubmed></ref>。テタヌス毒素の軽鎖(L)の触媒ドメインの二量体構造とその活性部位を示す。テタヌス毒素の軽鎖(L)の活性部位は、基質となるタンパク質が近づきやすい溝の内部に位置し、亜鉛に結合するモチーフであるHExxH(233-237)が中央部となるように正に荷電した亜鉛と配位結合する。つまり、亜鉛は2つのHisのイミダゾ-ル環(His(232)とHis(236))、そしてGlu(270)などのアミノ酸、さらにGlu(233)と強固な水素結合を形成する求核性の水分子、といった4つと相互作用している。特にこのモチーフ内にあるグルタミン酸は、それに結合している水分子が直接的にタンパク質の加水分解反応に関与するため特に重要である。<ref><pubmed> 15895988 </pubmed></ref>。<ref><pubmed> 15904688 </pubmed></ref>。[[Image:図2.jpg|left|400px]] [[Image:図3.jpg|center|400px]] | ||
== 重鎖(H)構造と機能 == | == 重鎖(H)構造と機能 == | ||
テタヌス毒素の重鎖(H)は、2つのサブドメインH<sub>N</sub>とH<sub>C</sub>に分けられる。テタヌス毒素重鎖(H)N末端側のH<sub>N</sub>は、ベシクル膜から軽鎖(L)を移行させることに関与しているが、疎水性が極めて高く、容易に不溶化沈殿するためにその構造解析が進んでいない。H<sub>C</sub>ドメインは神経筋接合部での神経終末へのテタヌス毒素の特異的な結合とその後の内部への取り込みに関与する。その結合には、神経細胞膜上に特にみられるポリシアロガングリオシド、グリコスフィンゴリン脂質と複合体を形成する。テタヌス毒素重鎖(H)C末端側H<sub>C</sub>の立体構造を右枠の中に示す。H<sub>C</sub>ドメインには、さらに2つのサブドメイン構造のH<sub>C</sub>NとH<sub>C</sub>Cから構成される。H<sub>C</sub>Nサブドメインはいくつかの炭水化物結合タンパク質(マメ科植物のレクチン等)と似たようなjelly-rollモチーフ内にβストランド構造を含む。H<sub>C</sub>Nのアミノ酸配列は、クロストリジウム属の中でも高度に保存されている。H<sub>C</sub>CサブドメインはIL-1やFGFといったタンパク質の認識と結合に関与するβシートが3つパックされたβ-trefoilという3つ葉状の構造を形成している。この配列はクロストリジウム属の中でも非常に保存性が低い。HCCサブドメインにはポリシアロガングリオシド(GD1bとGT1b)のオリゴ糖の部分に対して2つの結合部位があり、結合する部位(1281-1314)の中でもHis(1293)が関与する。<ref><pubmed> 10722735 </pubmed><ref>。<ref><pubmed> 11418600 </pubmed><ref>。 | テタヌス毒素の重鎖(H)は、2つのサブドメインH<sub>N</sub>とH<sub>C</sub>に分けられる。テタヌス毒素重鎖(H)N末端側のH<sub>N</sub>は、ベシクル膜から軽鎖(L)を移行させることに関与しているが、疎水性が極めて高く、容易に不溶化沈殿するためにその構造解析が進んでいない。H<sub>C</sub>ドメインは神経筋接合部での神経終末へのテタヌス毒素の特異的な結合とその後の内部への取り込みに関与する。その結合には、神経細胞膜上に特にみられるポリシアロガングリオシド、グリコスフィンゴリン脂質と複合体を形成する。テタヌス毒素重鎖(H)C末端側H<sub>C</sub>の立体構造を右枠の中に示す。H<sub>C</sub>ドメインには、さらに2つのサブドメイン構造のH<sub>C</sub>NとH<sub>C</sub>Cから構成される。H<sub>C</sub>Nサブドメインはいくつかの炭水化物結合タンパク質(マメ科植物のレクチン等)と似たようなjelly-rollモチーフ内にβストランド構造を含む。H<sub>C</sub>Nのアミノ酸配列は、クロストリジウム属の中でも高度に保存されている。H<sub>C</sub>CサブドメインはIL-1やFGFといったタンパク質の認識と結合に関与するβシートが3つパックされたβ-trefoilという3つ葉状の構造を形成している。この配列はクロストリジウム属の中でも非常に保存性が低い。HCCサブドメインにはポリシアロガングリオシド(GD1bとGT1b)のオリゴ糖の部分に対して2つの結合部位があり、結合する部位(1281-1314)の中でもHis(1293)が関与する。<ref><pubmed> 10722735 </pubmed></ref>。<ref><pubmed> 11418600 </pubmed></ref>。 | ||
== テタヌス毒素の作用機序 == | == テタヌス毒素の作用機序 == |
回編集