「小胞モノアミントランスポーター」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
4行目: 4行目:
英:Vesicular Monoamine Transporter  英略語:VMAT  
英:Vesicular Monoamine Transporter  英略語:VMAT  


 小胞モノアミントランスポーターは、4種類ある[[小胞]][[神経伝達物質]]輸送体タンパク質(トランスポーター)のうちの1つであり、[[モノアミン]]神経終末にある[[シナプス]]小胞や、[[副腎]]の[[クロム親和性細胞]]の[[有芯小胞]]に存在する。合成されたモノアミンを、放出に備えて小胞内に輸送、貯蔵する。VMATは依存性薬物([[精神刺激薬]])の分子標的であり、[[薬物依存]]のメカニズムの中でも特に[[神経細胞毒性]]を研究する上で注目される。
 小胞モノアミントランスポーターは、4種類ある[[小胞]][[神経伝達物質]]輸送体タンパク質(トランスポーター)のうちの1つであり、[[モノアミン]]神経終末にある[[シナプス]]小胞や、[[副腎]]の[[クロム親和性細胞]]の[[有芯小胞]]に存在する。合成されたモノアミンを、[[開口放出]]に備えて小胞内に輸送、貯蔵する。VMATは依存性薬物([[精神刺激薬]])の分子標的であり、[[薬物依存]]のメカニズムの中でも特に[[神経細胞]]毒性を研究する上で注目される。




==サブタイプ==
==サブタイプ==
 [[wikipedia:JA:|哺乳類]]では、''Slc18a1''遺伝子にコードされるVMAT1と、''Slc18a2''遺伝子にコードされるVMAT2の、2つのサブタイプが存在する。これらVMAT1とVMAT2は、[[小胞アセチルコリントランスポーター]](VAChT)とともにSLC(solute carrier)トランスポータースーパーファミリーの1つ、SLC18ファミリーを形成している<ref><pubmed>16762425</pubmed></ref>。  
 [[wikipedia:JA:|哺乳類]]では、''Slc18a1''遺伝子にコードされるVMAT1と、''Slc18a2''遺伝子にコードされるVMAT2の、2種類のサブタイプが存在する。これらVMAT1とVMAT2は、[[小胞アセチルコリントランスポーター]](VAChT)とともにSLC(solute carrier)トランスポータースーパーファミリーの1つ、SLC18ファミリーを形成している<ref><pubmed>16762425</pubmed></ref>。  




22行目: 22行目:




===モノアミン輸送の仕組み===
===モノアミン貯蔵の仕組み===


[[Image:モノアミン貯蔵の仕組み.jpg|thumb|250px|'''図2.VMATによる小胞内へのモノアミン取り込み機構'''<br>文献<ref name=ref1 />から改変]]
[[Image:モノアミン貯蔵の仕組み.jpg|thumb|250px|'''図2.VMATによる小胞内へのモノアミン取り込み機構'''<br>文献<ref name=ref1 />から改変]]


 VMATは、小胞内外のH<sup>+</sup>の[[電気化学的勾配]]を駆動力としてモノアミンを小胞内に輸送し、[[開口放出]]に備えて貯蔵している。小胞内へのモノアミン貯蔵は、[[神経活動]]に依存した開口放出に備えるだけでなく、モノアミンの合成と分解を調節する上でも必要である。VMAT1とVMAT2の場合、1分子のモノアミンを取り込むために、2分子のH<sup>+</sup>が必要となる。H<sup>+</sup>は、[[wikipedia:V-ATPase|V型ATPアーゼ]]の[[wikipedia:ja:ATP|ATP]]加水分解によって産生され、小胞内に移動される。これにより膜内外でpHの勾配が生じるため、VMATはH<sup>+</sup>とモノアミンを[[対向輸送]]することで、小胞内にモノアミンを取り込んでいる(図2)<ref name=ref1><pubmed>19259829</pubmed></ref>。また、[[wikipedia:ClC3|ClC3]]や[[wikipedia:ClC7|ClC7]]などのCl<sup>-</sup>チャネルを通ってCl<sup>-</sup>イオンが小胞膜に出入りすることで、膜内外における電荷のバランスが維持される。これにより、ATPアーゼとモノアミントランスポーターは個別に働くことができ、効率のよいモノアミンの貯留が可能となる。  
 VMATは、小胞内外のH<sup>+</sup>の[[電気化学的勾配]]を駆動力としてモノアミンを小胞内に輸送し、開口放出に備えて貯蔵している。小胞内へのモノアミン貯蔵は、[[神経活動]]に依存した開口放出に備えるだけでなく、モノアミンの合成と分解を調節する上でも必要である。VMAT1とVMAT2の場合、1分子のモノアミンを取り込むために、2分子のH<sup>+</sup>が必要となる。H<sup>+</sup>[[wikipedia:V-ATPase|V型ATPアーゼ]]の[[wikipedia:ja:ATP|ATP]]加水分解によって産生され、小胞内に移動される。これにより膜内外でpHの勾配が生じるため、VMATはH<sup>+</sup>とモノアミンを[[対向輸送]]することで小胞内にモノアミンを取り込んでいる(図2)<ref name=ref1><pubmed>19259829</pubmed></ref>。また、[[wikipedia:ClC3|ClC3]]や[[wikipedia:ClC7|ClC7]]などのCl<sup>-</sup>チャネルを通ってCl<sup>-</sup>イオンが小胞内に出入りすることで、膜内外における電荷のバランスが維持される。これにより小胞膜上のV型ATPアーゼとVMATは個別に働くことができ、効率のよいモノアミンの貯蔵が可能となる。  




33行目: 33行目:
 モノアミンの合成と小胞への輸送は従来、それぞれ独立した過程と考えられていたが、輸送の効率化のため、これらは一連の過程として行われるとする説がある。例えば、シナプス小胞膜上のVMAT2は、[[ドーパミン]]合成酵素である[[チロシン水酸化酵素]]や[[芳香族アミノ酸脱炭酸酵素]]、[[wikipedia:ja:シャペロン|シャペロン]]タンパク質である[[熱ショック蛋白質|Hsc70]]と複合体を形成しており、合成されたドーパミンを素早く効率的に小胞内に取り込んでいる、というモデルが提示されている<ref><pubmed>21797260</pubmed></ref>。
 モノアミンの合成と小胞への輸送は従来、それぞれ独立した過程と考えられていたが、輸送の効率化のため、これらは一連の過程として行われるとする説がある。例えば、シナプス小胞膜上のVMAT2は、[[ドーパミン]]合成酵素である[[チロシン水酸化酵素]]や[[芳香族アミノ酸脱炭酸酵素]]、[[wikipedia:ja:シャペロン|シャペロン]]タンパク質である[[熱ショック蛋白質|Hsc70]]と複合体を形成しており、合成されたドーパミンを素早く効率的に小胞内に取り込んでいる、というモデルが提示されている<ref><pubmed>21797260</pubmed></ref>。


 こうしたメカニズムは神経保護作用の点で重要であり、合成されたモノアミンの細胞質への拡散を最小限に抑え、モノアミンの酸化やそれに伴う[[神経細胞]]毒性発現を抑制すると考えられる。細胞質にモノアミンが過剰に存在すると、それらは酸化され[[wikipedia:ja:キノン|キノン]]やジヒドロキシ化合物に変化する。これら酸化物が産生する[[wikipedia:ja:活性酸素|活性酸素]]が原因となり、[[神経変性]]が誘導される。こうした神経細胞毒性発現は、[[精神刺激薬]]である[[メタンフェタミン]]においても見られ、VMAT2ヘテロ欠損マウスではメタンフェタミンによる神経細胞毒性の増強が示されており、またMPTPなどの外因性神経毒性物質を小胞内に閉じ込めることにより、活性酸素による神経変性に対して抑制作用をもつことも分かっている<ref name=ref1 /><ref><pubmed>17664021</pubmed></ref>。
 こうしたメカニズムは神経保護作用の点で重要であり、合成されたモノアミンの細胞質への拡散を最小限に抑え、モノアミンの酸化やそれに伴う[[神経細胞毒性]]発現を抑制すると考えられる。細胞質にモノアミンが過剰に存在すると、それらは酸化され[[wikipedia:ja:キノン|キノン]]やジヒドロキシ化合物に変化する。これら酸化物が産生する[[wikipedia:ja:活性酸素|活性酸素]]が原因となり、[[神経変性]]が誘導される。こうした神経細胞毒性発現は、[[精神刺激薬]]である[[メタンフェタミン]]においても見られ、VMAT2ヘテロ欠損マウスではメタンフェタミンによる神経細胞毒性の増強が示されており、またMPTPなどの外因性神経毒性物質を小胞内に閉じ込めることにより、活性酸素による神経変性に対して抑制作用をもつことも分かっている<ref name=ref1 /><ref><pubmed>17664021</pubmed></ref>。




76

回編集

案内メニュー