16,039
回編集
細編集の要約なし |
|||
7行目: | 7行目: | ||
[[image:シナプトタグミン図1.jpg|thumb|300px|'''図1''']] | [[image:シナプトタグミン図1.jpg|thumb|300px|'''図1''']] | ||
[[神経細胞]]間の情報伝達は、主に[[シナプス]]部における神経伝達物質のやり取りによって行われている。神経伝達物質はシナプス前部に存在するシナプス小胞に貯蔵されており、開口放出によって[[シナプス間隙]]へと放出される。この開口放出機構は、小胞のシナプス前部膜付近への移動(トランスロケーション:translocation)、[[細胞膜]]との繋留/接着(テザリング/ドッキング:tethering/ | [[神経細胞]]間の情報伝達は、主に[[シナプス]]部における神経伝達物質のやり取りによって行われている。神経伝達物質はシナプス前部に存在するシナプス小胞に貯蔵されており、開口放出によって[[シナプス間隙]]へと放出される。この開口放出機構は、小胞のシナプス前部膜付近への移動(トランスロケーション:translocation)、[[細胞膜]]との繋留/接着(テザリング/ドッキング:tethering/docking)、プライミングと呼ばれる融合可能な状態への準備(priming)を経て、小胞膜と細胞膜の融合(fusion)に至る一連の過程から構成されている(図1)。開口放出によって細胞膜に移行した小胞のタンパク質は、その後エンドサイトーシスによって選択的に回収(リサイクリング:recycling)される。 | ||
これらの過程の中で、特にシナプス小胞と細胞膜の融合は細胞外からのカルシウムイオン流入によって厳密に制御されていることから、シナプス小胞上にはカルシウムイオン上昇を感知するカルシウムセンサー(カルシウムイオンを結合し膜融合を促進する分子で、膜融合の装置そのものではない)の存在が提唱されてきた<ref name=ref8><pubmed>11399430</pubmed></ref>。遺伝学、生化学などを駆使した近年の目覚ましい研究成果により、現在ではシナプス小胞上に存在するシナプトタグミン1分子が主要なカルシウムセンサー(唯一ではなく、主に低親和性カルシウムセンサーとして機能)であると考えられている<ref name=ref4><pubmed>15217342</pubmed></ref> <ref name=ref5>'''Fukuda, M.'''<br>Molecular mechanism of Exocytosis.<br>Landes Bioscience, Austin, TX, (2006) 42-61</ref> <ref name=ref6><pubmed>16698267</pubmed></ref> <ref name=ref7><pubmed>18275379</pubmed></ref>。 | |||
また、シナプス小胞以外のカルシウム依存的な小胞輸送過程に他のシナプトタグミンアイソフォームの関与も相次いで報告され、シナプトタグミンファミリーがかなり普遍的なカルシウムセンサーではないかという概念が定着しつつある。 | |||
== シナプトタグミンファミリーの構造 == | == シナプトタグミンファミリーの構造 == |